

AUGUST 2008 YEAR 12 ASSESSMENT 4

HIGHER SCHOOL CERTIFICATE

TRIAL EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes.
- Working time 3 hours.
- Write using blue or black pen.
- Board-approved calculators may be used.
- A table of standard integrals is provided.
- All necessary working should be shown in every question.

Total marks - 120

- Attempt Questions 1-8.
- All questions are of equal value.
- Answer each question in a new booklet.

Outcomes assessed

HSC course

- **E1** appreciates the creativity, power and usefulness of mathematics to solve a broad range of problems
- **E2** chooses appropriate strategies to construct arguments and proofs in both concrete and abstract settings
- **E3** uses the relationship between algebraic and geometric representations of complex numbers and of conic sections
- **E4** uses efficient techniques for the algebraic manipulation required in dealing with questions such as those involving conic sections and polynomials
- **E5** uses ideas and techniques from calculus to solve problems in mechanics involving resolution of forces and resisted motion
- **E6** combines the ideas of algebra and calculus to determine the important features of the graphs of a wide variety of functions
- E7 uses the techniques of slicing and cylindrical shells to determine volumes
- **E8** applies further techniques of integration, including partial fractions, integration by parts and recurrence formulae, to problems
- **E9** communicates abstract ideas and relationships using appropriate notation and logical argument

Harder applications of the Extension 1 Mathematics course are included in this course. Thus the Outcomes from the Extension 1 Mathematics course are included.

From the Extension 1 Mathematics Course Preliminary course

- **PE1** appreciates the role of mathematics in the solution of practical problems
- **PE2** uses multi-step deductive reasoning in a variety of contexts
- **PE3** solves problems involving inequalities, polynomials, circle geometry and parametric representations
- **PE4** uses the parametric representation together with differentiation to identify geometric properties of parabolas
- **PE5** determines derivatives that require the application of more than one rule of differentiation
- **PE6** makes comprehensive use of mathematical language, diagrams and notation for communicating in a wide variety of situations

HSC course

- **HE1** appreciates interrelationships between ideas drawn from different areas of mathematics
- **HE2** uses inductive reasoning in the construction of proofs
- **HE3** uses a variety of strategies to investigate mathematical models of situations involving projectiles, simple harmonic motion or exponential growth and decay
- **HE4** uses the relationship between functions, inverse functions and their derivatives
- **HE5** applies the chain rule to problems including those involving velocity and acceleration as functions of displacement
- **HE6** determines integrals by reduction to a standard form through a given substitution
- **HE7** evaluates mathematical solutions to problems and communicates them in an appropriate form

Total marks – 120 Attempt Questions 1-8 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Marks

QUESTION 1 (15 marks) Use a SEPARATE writing booklet.

(a) Using the table of standard integrals find
$$\int \frac{dx}{\sqrt{x^2 + 7}}$$

(b) By completing the square find
$$\int \frac{dx}{\sqrt{4x-x^2}}$$

(c) Find
$$\int \frac{1-2x}{\sqrt{1-x^2}} dx$$
, $|x| < 1$.

(d) Find
$$\int \cos^3 x \, dx$$
.

(e) (i) Use the substitution
$$x = \frac{2}{3}\sin\theta$$
 to prove that $\int_0^{\frac{2}{3}} \sqrt{4-9x^2} \ dx = \frac{\pi}{3}$.

(ii) Hence or otherwise, find the area enclosed by the ellipse
$$\frac{9x^2}{4} + \frac{y^2}{4} = 1$$
.

(f) Evaluate
$$\int_0^1 \tan^{-1} x \, dx$$
.

QUESTION 2 (15 marks) Start a new writing booklet.

- (a) Given $z_1 = 3 i$ and $z_2 = 2 + 5i$, express the following in the form a + ib where a and b are real:
 - (i) $(\bar{z}_1)^2$

2

(ii) $\frac{z_1}{z_2}$

2

(iii) $|z_1z_2|$

2

(b) (i) Sketch the region $|z+1+i| \le 1$.

2

(ii) Find the maximum and minimum values of |z|.

- 2
- (c) (i) The complex number z = x + iy is represented by the point P. If $\frac{z-1}{z-2i}$ is purely imaginary, show that the locus of P is the circle $x^2 x + y^2 2y = 0$.
- 3

(ii) Sketch this locus showing all important features.

2

QUESTION 3 (15 marks) Start a new writing booklet.

(a) Sketch on separate diagrams, the graphs of:

(i)
$$y = (x-1)^2(x+2)$$

(ii)
$$y^2 = (x-1)^2(x+2)$$

(iii)
$$y = \frac{1}{(x-1)^2(x+2)}$$

(b) Sketch
$$y = \log_e (x+1)^2$$

- (c) Sketch the graph of the function $y = \frac{x^2 x + 1}{(x 1)^2}$, clearly showing the coordinates of any points of intersection with the x and y axes, the coordinates of any turning points and the equations of any asymptotes. There is no need to investigate points of inflexion.
- (d) If α , β and γ are the roots of $x^3 + 2x^2 3x 4 = 0$,

(i) Evaluate
$$\alpha^2 + \beta^2 + \gamma^2$$
.

(ii) Form the equation whose roots are $\beta \gamma$, $\alpha \gamma$ and $\alpha \beta$.

2

QUESTION 4 (15 marks) Start a new writing booklet.

- (a) The foci of a hyperbola of eccentricity $\frac{13}{12}$ are the points ($\pm 13,0$).
 - (i) Show that the equation of the hyperbola is $\frac{x^2}{144} \frac{y^2}{25} = 1$.
 - (ii) Find the equation of the tangent to the hyperbola at the point $(12\sec\theta, 5\tan\theta)$.
- (b) (i) Show that the condition for the line y = mx + c to be a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is that $c^2 = a^2m^2 + b^2$.
 - (ii) Show that the pair of tangents drawn from the point (3, 4) to the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ are at right angles to each other.

(c) (i) Verify that
$$\alpha = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$$
 is a root of $z^5 + z - 1 = 0$.

(ii) Find the monic cubic equation with real coefficients whose roots are also the roots of $z^5 + z - 1 = 0$ but do not include α .

QUESTION 5 (15 marks) Start a new writing booklet.

- (a) The base of a certain solid is a circle with radius 2. Each parallel cross-section of the solid is a square. Find the volume of the solid.
- (b) The area enclosed by the curve $y = (x-2)^2$ and the line y = 4 is rotated around the y axis. Use the method of cylindrical shells to find the volume formed.



- (c) (i) Show that the tangent to the rectangular hyperbola xy = 4 at the point $T\left(2t, \frac{2}{t}\right)$ has equation $x + t^2y = 4t$.
 - (ii) This tangent cuts the x-axis at the point Q. Find the coordinates of Q.
 - (iii) Show that the line through Q which is perpendicular to the tangent at T has equation $t^2x y = 4t^3$.
 - (iv) This line through Q cuts the rectangular hyperbola at the points R and S. Show that the midpoint of RS has coordinates $M\left(2t,-2t^3\right)$.
 - (v) Find the equation of the locus of M as T moves on the rectangular hyperbola, stating any restrictions that may apply.

3

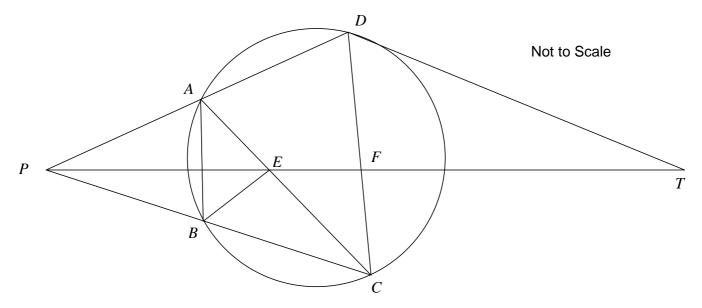
3

2

3

QUESTION 6 (15 marks) Start a new writing booklet.

(a) ABCD is a cyclic quadrilateral. DA produced and CB produced meet at P. T is a point on the tangent at D. PT cuts CA and CD at E and F respectively. TF = TD.



- (i) Copy the diagram and show that *AEFD* is a cyclic quadrilateral.
- (ii) Show that *AEBP* is a cyclic quadrilateral.

(b) (i) If
$$I_n = \int_0^1 \frac{dx}{\left(1+x^2\right)^n}$$
 prove that $2nI_{n+1} = 2^{-n} + (2n-1)I_n$.

(ii) Hence evaluate
$$\int_0^1 \frac{dx}{(1+x^2)^3}.$$

(c) (i) Use the substitution x = a - y where a is a constant to prove that

$$\int_0^a f(x)dx = \int_0^a f(a-x)dx$$

(ii) Hence show that
$$\int_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx = \frac{\pi^2}{4}$$

QUESTION 7 (15 marks) Start a new writing booklet.

(a) The functions S(x) and C(x) are defined by the formulae:

$$S(x) = \frac{1}{2}(e^x - e^{-x})$$
 and $C(x) = \frac{1}{2}(e^x + e^{-x})$.

(i) Verify that S'(x) = C(x).

1

(ii) Show that S(x) is an increasing function for all real values of x.

1

(iii) Prove that $[C(x)]^2 = 1 + [S(x)]^2$.

1

1

- (iv) S(x) has an inverse function $S^{-1}(x)$ for all values of x. Briefly justify this statement.
- (v) Let $y = S^{-1}(x)$. Prove $\frac{dy}{dx} = \frac{1}{\sqrt{1+x^2}}$.

2

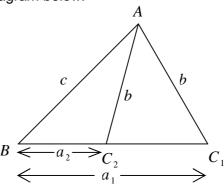
(vi) Hence, or otherwise, show that $S^{-1}(x) = \log_e \left(x + \sqrt{1 + x^2} \right)$.

2

- (b) (i) Using the remainder theorem, or otherwise, show that x-a-b-c is a factor of P(x) = (x-a)(x-b)(x-c) (b+c)(c+a)(a+b).
- 2

(ii) Hence, or otherwise, solve the equation (x-2)(x+3)(x+1)-4=0.

- 2
- (c) In $\triangle ABC$ the lengths b and c and $\angle B$ are given and have such values that two distinct triangles are possible as shown in the diagram below.



Show that $a_1 - a_2 = 2\sqrt{b^2 - c^2 \sin^2 B}$

QUESTION 8 (15 marks) Start a new writing booklet.

Marks

- (a) A particle of mass 1 kg moves in a straight line before coming to rest. The resultant force acting on the particle directly opposes its motion and has magnitude m(1+v) where v is its velocity. Initially the particle is at the origin and travelling with velocity Q where Q > 0
 - (i) Show that v is related to the displacement x by the formula $x = Q v + \log_e \left(\frac{1+v}{1+Q} \right)$.
 - (ii) Find an expression for v in terms of t.
 - (iii) Find an expression for x in terms of t.
 - (iv) Show that Q = x + v + t
 - (v) Find the distance travelled and the time taken by the particle in coming to rest.
- (b) (i) State why, for x < 1, the sum of n terms of the series $1 + x + x^2 + x^3 + \dots + x^{n-1}$ is $\frac{1-x^n}{1-x}$.
 - (ii) Show that $1+2x+3x^2+.....+(n-1)x^{n-2}=\frac{(n-1)x^n-nx^{n-1}+1}{(1-x)^2}$
 - (iii) Hence find an expression for $1+1+\frac{3}{4}+\frac{4}{8}+.....+\frac{n-1}{2^{n-2}}$ and show that this sum is always less than 4.

END OF PAPER

TABLE OF STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \qquad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \qquad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \sin^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 + a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

NOTE: $\ln x = \log_e x$,

x > 0