SGS Trial 2005 Form VI Mathematics Extension 2 Page 2

QUESTION ONE (15 marks) Use a separate writing booklet.

Marks

(a) Find
$$\int_0^4 \frac{1}{\sqrt{2x+1}} dx$$
.

(b) Find
$$\int \tan^3 x \sec^2 x \, dx$$
.

(c) Find
$$\int \frac{x}{x^2 - 4x + 8} dx.$$

(d) (i) Find the values of A and B such that
$$\frac{3x^2 - 10}{x^2 - 4x + 4} = 3 + \frac{A}{x - 2} + \frac{B}{(x - 2)^2}$$
.

(ii) Find
$$\int \frac{3x^2 - 10}{x^2 - 4x + 4} dx$$
.

(e) Use integration by parts twice, to show that
$$\int_1^e \sin(\ln x) dx = \frac{e}{2}(\sin 1 - \cos 1) + \frac{1}{2}.$$

QUESTION TWO (15 marks) Use a separate writing booklet.

Marks

(a) Simplify
$$|\cos \theta + i \sin \theta|$$
.

a) Simplify
$$|\cos \theta + i \sin \theta|$$
.

(b) Express
$$\frac{i^5(1-i)}{2+i}$$
 in the form $a+ib$ where a and b are rational.

(c) By drawing a diagram, or otherwise, find the solutions of
$$z^5 = -1$$
.

$$1 \le |z-i| \le 2$$
 and Im $z \ge 0$.

(e) Find the complex number
$$\phi$$
 if $1+i$ is a root of the equation $z^2 + \phi z - i = 0$.

(f)

Suppose that $z = 1 + \sqrt{3}i$ and $\omega = (\operatorname{cis} \alpha)z$ where $-\pi < \alpha \le \pi$.

(i) Find the argument of z.

(ii) Find the value of
$$\alpha$$
 if ω is purely imaginary and $\text{Im}(\omega) > 0$.

(iii) Find the value of
$$\arg(z+\omega)$$
 if ω is purely imaginary and $\operatorname{Im}(\omega)>0$.

SGS Trial 2005 Form VI Mathematics Extension 2 Page 3

QUESTION THREE (15 marks) Use a separate writing booklet.

Marks

(a)

The diagram above shows the region bounded by the curve $x = 2 - y^2$ and the lines x = 3, y = 1 and y = -1. This region is rotated about the y-axis to form a solid. The interval ℓ at height y sweeps out an annulus.

(i) Show that the annulus at height y has area equal to

2

$$\pi(5+4y^2-y^4).$$

(ii) Find the volume of the solid.

2

- (b) Consider the function $f(x) = \frac{1}{1+x^3}$.
 - (i) Show that there is a horizontal point of inflexion at x = 0.

2

(ii) Find the vertical asymptote and the horizotal asymptote.

2

(iii) Sketch y = f(x) showing the features from parts (a) and (b) and the y-intercept.

1

(iv) On a separate diagram sketch y = |f(x)|.

2

(v) On a separate diagram sketch $y^2 = f(x)$.

Z

(vi) On a separate diagram sketch $y = e^{f(x)}$.

2

- (a) Consider the polynomial equation $x^3 3x^2 + x 5 = 0$ which has roots α , β and γ .
 - (i) Show that $\alpha + \beta = 3 \gamma$.

1

(ii) Write down similar expressions for $\alpha + \gamma$ and $\beta + \gamma$ and hence find a polynomial equation which has the roots $\alpha + \beta$, $\alpha + \gamma$ and $\beta + \gamma$.

(b)

[3

The diagram above shows a monument 50 metres high. A horizontal cross section x metres from the top is an equilateral triangle with sides $\frac{x}{5}$ metres. Use integration to find the volume of the monument.

(c)

E

Use the method of cylindrical shells to find the volume of the solid formed when the region bounded by the curve $y = \frac{\sin x}{x}$ and the lines y = 0 and $x = \frac{\pi}{2}$ is rotated about the y-axis.

- (d) An hyperbola is defined parametrically by $x = 3 \sec \theta$ and $y = 4 \tan \theta$.
 - (i) Write the equation of the curve in Cartesian form and show that the eccentricity is $\frac{5}{3}$.

2

(ii) Sketch the curve showing its x-intercepts, foci, directrices and asymptotes.

4

Exam continues next page ...

QUESTION FIVE (15 marks) Use a separate writing booklet.

Marks

The diagram above shows the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with foci F(ae, 0) and F'(-ae, 0). $P(x_1, y_1)$ is any point on the ellipse.

Let M and M' be the feet of the perpendiculars from P to the directrices $x = \frac{a}{e}$ and

$$x=-rac{a}{e}.$$

Line TS is a tangent to the ellipse at P and G is the point where the normal at P meets the x-axis.

(i) Show that the equation of the normal at P is
$$\frac{a^2x}{x_1} - \frac{b^2y}{y_1} = a^2 - b^2$$
.

(ii) Show that the point G has co-ordinates
$$(e^2x_1, 0)$$
.

(iii) Show that the distance
$$PF$$
 is $a - ex_1$.

(iv) Show that
$$\frac{PF}{FG} = \frac{PF'}{F'G}$$
.

(b) (i) Show that
$$1 - \cos 2\theta - i \sin 2\theta = 2 \sin \theta (\sin \theta - i \cos \theta)$$
.

(ii) Given that
$$\frac{z-1}{z} = \operatorname{cis} \frac{2\pi}{5}$$
, show that $z = \frac{1}{2}(1 + i \cot \frac{\pi}{5})$.

QUESTION SIX (15 marks) Use a separate writing booklet.

Marks

(a)

In the diagram above, ABC is a triangle with the circumcircle through points A, B and C drawn. P is another point on the minor arc BC. Points L, M and N are the feet of the perpendiculars from P to the sides BC, CA and AB respectively.

(i) Copy the diagram and explain why P, L, N and B are concyclic.

1

(ii) Explain why P, L, C and M are concyclic.

1

- (iii) Let $\angle PLM = \alpha$.
 - (α) Show that $\angle ABP = \alpha$.

4

 (β) Hence show that M, L and N are collinear.

2

(b) A particle of unit mass is thrown vertically downwards with an initial velocity of v_0 . It experiences a resistive force of magnitude kv^2 where v is its velocity. Taking downwards as the positive direction, the equation of motion of the particle is given by

$$\ddot{x}=g-kv^2.$$

Let V be the terminal velocity of the particle.

(i) Explain why $V = \sqrt{\frac{g}{k}}$.

1

(ii) Show that $v^2 = V^2 + (v_0^2 - V^2)e^{-2kx}$.

4

- (c) Let z = x + iy be any non-zero complex number such that $z + \frac{1}{z} = k$, where k is a real number.
 - (i) Prove that either y = 0 or $x^2 + y^2 = 1$.

2

(ii) Show that if y = 0 then $|k| \ge 2$.

2

Exam continues next page ...

(iv) Form a quadratic equation with α and θ as roots.

(v) Deduce that $\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{8\pi}{7} = -\frac{1}{2}$.

- (b) Suppose that y = f(x) is an increasing function for $x \ge 1$. Suppose also that $f(x) \ge 0$ for $x \ge 1$.
 - (i) Explain, with the aid of a diagram, why $f(1) + f(2) + \cdots + f(n-1) < \int_1^n f(x) dx < f(2) + f(3) + \cdots + f(n).$
 - (ii) Show that $\int_{1}^{n} \ln x \, dx = n \ln n n + 1.$
 - (iii) Use parts (i) and (ii) to deduce that, for n > 1:

$$(\alpha) \ n! > \frac{n^n}{e^{n-1}}$$

$$(\beta) \ \ n! < \frac{n^{n+1}}{e^{n-1}}$$

(iv) Find $\lim_{n\to\infty} \frac{\sqrt[n]{n!}}{n}$. (You may assume that $\lim_{n\to\infty} \sqrt[n]{n} = 1$.)

END OF EXAMINATION