CRANBROOK

MATHEMATICS EXTENSION 2

2006

HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

General Instructions

- Reading time 5 minutes
- Writing time 3 hours
- All eight questions should be attempted
- Total marks available 120
- All questions are worth 15 marks
- An approved calculator may be used
- All relevant working should be shown for each question
- Answer each question in a separate 8 page booklet.

(a) (i) Find $\int \frac{dx}{x^2 + 8x + 11}$

(ii) Find $\int \frac{\cos 3x \, dx}{1 + \sin 3x}.$

2

(iii) Find $\int \frac{5x+4}{\sqrt{4+3x-5x^2}} dx$

3

(b) Evaluate $\int_{-1}^{1} \frac{\sin^{-1} x}{1 + x^2} dx$

2

(c) Show that $\int_0^{\pi} (\tan^3 x + \tan x) dx = \frac{1}{2}.$

3

Hence show that $\int_0^{\frac{\pi}{4}} \tan^3 x \ dx = \frac{1}{2} (1 - \ln 2)$

(a) Find $\int \frac{\sin^{-1} 2x}{\sqrt{1-4x^2}} dx$.

1

(ii) Find $\int \frac{\cos^5 x}{\sin^2 x} dx$.

2

(b) Evaluate $\int_{0}^{2} x^3 e^{x^2} dx$.

. 2

(c) By expressing $\frac{48}{x^3 + 64}$ as partial fractions, find $\int \frac{48}{x^3 + 64} dx$.

5

- (d) Let $I_n = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot^n x \, dx$ where *n* is a positive integer.
 - (i) Find the value of I_1 .

1

(ii) Show $I_n + I_{n-2} = \frac{1}{n-1}$ for $n \ge 2$.

3

(iii) Hence evaluate I_5 .

- (a) (i) If $z = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$, find z^4 , in the form x + iy.
 - (ii) Hence or otherwise, find z^{13} in the form x + iy.
- (b) Find all the complex numbers z = a + ib, where a and b are real, such that $|z|^2 7 = 2i(z + 2)$.
- (c) (i) Express $z = 4 + 4\sqrt{3}i$ in modulus-argument form.
 - (ii) Hence find the three values of $z^{\frac{1}{3}}$ in modulus-argument form.
- (d) The Argand diagram shows the points A and B, which represent the complex numbers z_1 and z_2 respectively. Given that ΔBOA is a right-angled, isosceles triangle, show that $(z_1 + z_2)^2 = 2z_1 z_2$.

(a) The area bounded by the curve $y = x^3 + 1$ and the x and y axes is rotated about the y-axis. By taking slices perpendicular to the y-axis find the volume of the solid generated.

(b)

The base of a solid is the semi-circular region in the x - y plane with the straight edge running from the point (0,-1) to the point (0,1) and the point (1,0) on the curved edge of the semicircle.

Each cross-section perpendicular to the x-axis is an isosceles triangle with each of the two equal sidelengths three quarters the length of the third side.

- (i) Show that the area of the triangular cross-section at x = a is $\frac{\sqrt{5}}{2}(1-a^2)$.
- (ii) Hence find the volume of the solid.

2

- (c) The region S is enclosed by the line x + y = a; a > 0, the curve $y = x^3 ax^2$ and the y-axis.
 - (i) Sketch the region S; clearly labelling its intercepts with the axes.
 - (ii) The region S is rotated around the line x = a to form a solid. Use the method of cylindrical shells to find the volume of this solid.

- (a) The equation $x^3 3x 2 = 0$ has roots α , β and γ .
 - (i) Find the equation with roots α^3 , β^3 and γ^3 .
 - (ii) Hence or otherwise, find $\alpha^7 \beta \gamma + \alpha \beta^7 \gamma + \alpha \beta \gamma^7$.
- (b) (i) Find the equation of the normal to $x^2 xy y^2 = 1$ at the point (2,1).
 - (ii) Find the coordinates of the other point of intersection where the 2 normal intersects with the curve.
- (c) Using mathematical induction, prove that

$$\sum_{r=1}^{n} r^{3} < n^{2} (n+1)^{2} \text{ for } n = 1,2,3...$$

(d) The ellipse with equation $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the hyperbola with equation $\frac{x^2}{A^2} - \frac{y^2}{B^2} = 1$, have the same directrices. Show that $A^2 = \frac{9}{5}\sqrt{5(A^2 + B^2)}$.

- (a) The equation $ax^4 + bx^3 + cx^2 + dx + e = 0$ has a quadruple root α .
 - (i) Find α in terms of a and b.
 - (ii) Hence, show $\left(1 + \frac{b}{4a}\right)^4 = \frac{a+b+c+d+e}{a}$.
- (b) Find the equation of the normal to the hyperbola $\frac{x^2}{6} \frac{y^2}{8} = 1$ at the point (3,2).
- (c) $P(a\cos\theta, b\sin\theta)$ lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. The tangent at P meets the tangents at the ends of the major axis at Q and R. Show that QR subtends a right angle at either focus. Include a neat diagram with your answer.

3

- (a) For what values of k does the equation $x^3 3x^2 24x + k = 0$ have one real root?
- (b) A polynomial P(x) gives remainders -2 and 1 when divided by 2x-1 and x-2 respectively. What is the remainder when P(x) is divided 3 by $2x^2-5x+2$?

(c)

The ellipse E_1 has equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the ellipse E_2 has equation $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$. The point $P(x_0, y_0)$ lies outside both E_1 and E_2 .

(i) Find all the points of intersection of E_1 with E_2 .

(ii) The chord of contact to E_1 from the point $P(x_0, y_0)$ has equation

$$\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1$$
.

This chord of contact intersects with the chord of contact to E_2 from the point $P(x_0, y_0)$ at the point $Q(x_2, y_2)$.

Find the coordinates of the point Q.

(iii) Using your answer to part (i) or otherwise show that Q cannot lie outside both E_1 and E_2 .

- (a) The real numbers a > 0, b > 0 and c > 0 are such that $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$ are in geometric progression.
 - (i) Using the fact that $a^2 + b^2 \ge 2ab$, show that $a^2 + c^2 \ge ab + bc$.
 - (ii) Show $\frac{1}{a^2} + \frac{1}{c^2} \ge \frac{2}{h^2}$.
- (b) Consider the function $f(x) = x \ln(x^2 + 1)$ for $x \ge 0$.
 - (i) Show that $x > \ln(x^2 + 1)$ for x > 0.
 - (ii) By evaluating $\int_{0}^{1} x \, dx$ and $\int_{0}^{1} \ln(x^2 + 1) \, dx$, show that $5 > 2\ln 2 + \pi$.

Question 8 continues on the next page

(c)

The points A, B, C and D lie on the circle \mathbb{C}_1 . From the exterior point T, a tangent is drawn to point A on CThe line CT passes through D and TC is parallel to AB.

- (i) Prove that $\triangle ADT$ is similar to $\triangle ABC$.
- (ii) The line BA is produced through A to point M, which lies on a second circle \mathbb{C}_2 . The points A, D, T also lie on \mathbb{C}_2 and the line DM crosses AT at O.
 - (1) Show that $\triangle OMA$ is isosceles.

3

(2) Show that TM = BC

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0