
Lecture 52
Dynamics - Variable Acceleration

Example. The acceleration due to gravity at a point outside the earth is inversely pro-
portional to the square of the distance x from the centre, i.e., ẍ = − k

x2 . Neglecting air
resistance, show that if a particle is projected vertically upwards with speed u from a point
on the Earth’s surface, its speed v in any position x is given by v2 = u2 − 2gR2( 1

R − 1
x )

where R is the radius of the Earth and g the acceleration due to gravity at the Earth’s
surface. Show that the greatest height H above the Earth’s surface reached by the particle
is H = u2R

2gR−u2 and find the speed needed to escape the Earth’s influence. (R = 6400 km,
g = 10 m/s2 = 0.01 km/s2.)

Solution.

Initially, v = u and x = R ∴ ẍ = −g.
ẍ = − k

x2 = −kx−2 ∴ d
dx ( 1

2v2) = −kx−2 ∴ 1
2v2 = kx−1 + c = k

x + c
When v = u, x = R
∴ 1

2u2 = k
R + c ∴ c = 1

2u2− k
R ∴ 1

2v2 = k
x + 1

2u2− k
R ∴ v2 = u2 + 2k

x − 2k
R ∴ u2−2k( 1

R − 1
x ).

But when x = R, ẍ = −g −g = − k
R2 k = gR2.

∴ v2 = u2 − 2gR2( 1
R − 1

x ) greatast height is reached when v = 0.
∴ u2 − 2gR2( 1

R − 1
x ) = 0 ∴ 2gR2( 1

R − 1
x ) = u2 ∴ 1

R − 1
x = u2

2gR2 ∴ 1
x = 1

R − u2

2gR2 = 2gR−u2

2gR2

∴ x = 2gR2

2gR−u2

∴ greatest height above Earth’s surface is
2gR2

2gR−u2 − R = 2gR2−R(2gR−u2)
2gR−u2 = 2gR2−2gR2+Ru2

2gR−u2 = u2R
2gR−u2 .

If it escapes the Earth’s influence, H → ∞ (since it keeps going).
So 2gR − u2 = 0 and ∴ u2 = 2gR
∴ u =

√
2gR (i.e., the escape velocity) �

√
2(0.01)(6400) = 8

√
2 km/s � 11.3 km/s.



Resisted Motion - from Coroneos, 1982a

Case 1. - projected upwards.

A particle of mass m is projected vertically upwards with velocity u, in a medium whose
resistance to the motion varies as the velocity of the particle. Prove that the time to reach
the highest point of the path is 1

k ln(1 + ku
g ), where k is a constant, and find this greatest

height. {g is the acceleration due to gravity.}

Solution.

Let the velocity v and the displacement x be measured upward (↑) from the point of
projection O. Since the resistance R to the motion varies as the velocity v, then R = Kv
where K is a positive constant. (Direction of R will be downward since resistance is always
in the opposite direction since resistance is always in the opposite direction to the velocity.)
For convenience later, let K = mk and ∴ R = mkv. Hence, the force acting on the particle
in the downward (↓) direction, is mg +R. Now, by Newton’s Second Law, the force on the
particle in the upward (↑) direction is mẍ. Thus, mẍ = −mg − mkv, i.e., ẍ = −g − kv is
the equation of motion of the particle.

Firstly, ẍ = dv
dt , ∴ dv

dt = −g − kv & ∴ dt
dv = −1

g+kv .
∴ t = −

∫
dv

g+kv = − 1
k ln(g + kv) + c, where C is a constant ... (1)

By data, when t = 0, v = u, ∴ 0 = − 1
k ln(g + ku) + c, whence c = 1

k ln(g + ku)
∴ (1) becomes t = 1

k ln(g + ku) − 1
k ln(g + kv) = 1

k ln g+ku
g+kv ... (2)

At the highest point on the path v = 0 ∴ t = 1
k ln g+ku

g .
That is, the time to reach the highest point is 1

k ln(1 + ku
g ).

Secondly, taking ẍ = v dv
dx , then the equation of motion becomes v dv

dx = −g − kv,
i.e., dv

dx = −(g+kv)
v

and ∴ dx
dv = −v

g+kv ... (3)

Hence, x = −
∫

v dv
g+kv = −

∫ 1
k (g+kv)− g

v

g+kv dv = − 1
k

∫
(1 − g

g+kv ) dv

∴ x = − 1
k (v − g

k ln(g + kv)) + c1 ... (4)
Now, when x = 0, v = u ∴ 0 = − 1

k [u − g
k ln(g + ku)] + c1

Thus, from (4), we have x = 1
k [u − g

k ln(g + ku)] − 1
k [v − g

k ln(g + kv)]
The greatest height H is given, when v = 0, by
H = 1

k [u − g
k ln(g + ku)] − 1

k [− g
k ln g] = u

k − g
k2 ln( g+ku

g ) = 1
k2 [uk − g ln(1 + ku

g )].



{Alternatively, the distance travelled from v = u to v = 0, i.e., the greatest height H, is
given by H = −

∫ 0

u
v dv
g+kv ..., see (3) above.}



Lecture 53
Case 2 - dropped down

A particle of mass m falls vertically from rest, in a medium whose resistance is proportional
to the velocity. Find the terminal velocity of the particle and derive expressions in terms
of (i) t (ii) v.

Solution.

ẍ = g − kv
dv
dt = g − kv

dv
g−kv = dt

∴ − 1
k ln(g − kv) = t + c

when t = 0, v = 0
− 1

k ln g = 0 + c, ∴ c = − 1
k ln g.

∴ t = 1
k ln g − 1

k ln(g − kv) = 1
k ln g

g−kv

∴ ln g
g−kv = kt

∴ g
g−kv = ekt

∴ g−kv
g = e−kt

g − kv = ge−kt

∴ kv = g − ge−kt

∴ v = g
k (1 − e−kt)

& lim
t→∞

v = g
k ∴ terminal velocity = g

k (since as t → ∞, e−kt → 0)
dx
dt = g

k (1 − e−kt)
∴ x = g

k (1 − e−kt)
∴ x = g

k

∫
(1 − e−kt) dt = g

k (t + 1
ke−kt) + c

& when x = 0, t = 0 ⇒ c = − g
k2

x = g
k (t + 1

ke−kt) − g
k2 = g

k2 (kt + e−kt − 1)
ẍ = g − kv
v̈ dv

dx = g − kv

∴ v dv
g−kv = dx

∴ x =
∫

v dv
g−kv =

∫ − 1
k (g−kv)+ g

k

g−kv dv =
∫

(− 1
k + g

k
1

g−kv dv) = − v
k − g

k2 ln(g − kv) + c



When x = 0, v = 0 ⇒ c = g
k2 ln g

x = − v
k − g

k2 ln(g − kv) + g
k2 ln g = − v

k + g
k2 ln g

g−kv .



Lecture 54
Circular Motion

Summary (Physics)

Constant angular velocity

ω = dθ
dt

1. v = rω
2. T = 2π

ω

3. θ = ωt (angular displacement)
4. rω2 = v2

r

Tangential and Normal components of Acceleration.

Change in velocity along tangent at
P = (v + δv) cos δθ − v but cos δθ � 1

� v + δv − v
= δv.

Along normal at
P = (v + δv) sin δθ but sin δθ � δθ

= (v + δv)δθ
= vδθ + δvδθ but δθδv we ignore
= vδθ.

∴ tangential acceleration from P to Q = δv
δt

∴ tangential acceleration at P = lim
δt→0

δv
δt = dv

dt = d(rω)
dt = r d

dt (
dθ
dt ) = r d2θ

dt2 = rθ̈ - this equals

zero for constant angular velocity.



Method 1 - as above

Acceleration along tangent at P = lim
δt→0

δv
δt = dv

dt = d
dt (rω) = r dω

dt = r d
dt (

dθ
dt ) = r d2θ

dt2 = rθ̈

Acceleration along normal at P = limδt→0
vδθ
δt = v dθ

dt = rω.ω = rω2.

Method 2.
Acceleration in normal/tangential directions.

Consider OA to be the x axis.
x = r cos θ, y = r sin θ
dx
dt = dx

dθ
dθ
dt = −r sin θ.θ̇

dy
dt = dy

dθ
dθ
dt = r cos θ.θ̇.

Acceleration:
d2x
dt2 = d

dt (−r sin θ.θ̇) = −r sin θ.dθ̇
dt + θ̇ d

dt (−r sin θ) = −r sin θ.θ̈ + θ̇.(−r cos θ).dθ
dt

= −r sin θ.θ̈ − r cos θ.(θ̇)2

d2y
dt2 = r cos θ.dθ̇

dt + θ̇. d
dθ (r cos θ).dθ

dt = r cos θ.θ̈ − r sin θ.(θ̇)2



Lecture 55
Acceleration Components

d2x
dt2 = −r sin θ.θ̈ − r cos θ.θ̇2

d2y
dt2 = r cos θ.θ̈ − r sin θ.θ̇2

acceleration in direction PN
= ÿ sin θ + ẍ cos θ
= r cos θ sin θ.θ̈ − r sin2 θ.θ̇2 − r sin θ cos θ.θ̈ − r cos2 θ.θ̇2

= −r(θ̇)2(sin2 θ + cos2 θ)
= −rθ̇2

= −rω2 ⇒ direction is towards centre.

acceleration in direction PT
= ÿ cos θ − ẍ sin θ
= r cos2 θ.θ̈ − r sin θ cos θ.θ̇2 + r sin2 θ.θ̈ + r sin θ cos θ.θ̇2

= rθ̈(cos2 θ + sin2 θ)
= rθ̈ (or rω̇ or r d2θ

dt2 )

Example

A string 50cm long will break if a mass exceeding 40kg is hung from it. A mass of 2kg is
attached to one end of a string and it is revolved in a circle in a horizontal plane. Find
the greatest angular velocity without the string breaking (gravity = g).

Force ≤ 40gN (i.e., m/sec2)

Horizontal forces
T = ma = mrω2 = 2kg.0.5m.ω2

But T ≤ 40g ∴ ω2 ≤ 40g (strng is elastic and not massive)
∴ ω ≤ √40g rad/sec.



Conical Pendulum

- need to analyse forces vertically and horizontally.

T cos θ = mg
Horizontal forces: T sin θ = mrω2

T sin θ
T cos θ = tan θ = mrω2

mg = rω2

g ← independant of mass

From diagram, tan θ = r
h ∴ r

h = rω2

g ∴ h = g
ω2 ∴ ω2 = g

h ∴ ω =
√

g
h

But period = 2π
ω = 2π

√
h
g

T sin θ = mrω2 but sin θ = r
l ∴ r = l sin θ ∴ T sin θ = ml sin θω2 ∴ T = mlω2.

Example

a rod of length R is attached horizontally to a rotating vertical support. A string of lenght
l with a mass m attached to the end, is attached to the rod as shown. The support is

rotated at speed of ω rad/s. Show that ω =
√

g tan θ
R+l sin θ .

Vertically, T cos θ = mg, horizontally, T sin θ = mrω2, but r = R + l sin θ

∴ T sin θ
T cos θ = tan θ = mrω2

mg = rω2

g = (R+l sin θ)ω2

g

∴ ω2 = g tan θ
R+l sin θ ∴ ω =

√
g tan θ

R+l sin θ
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Tension in String.

T sin θ = mrω2, T cos θ = mg, T = mlω2

∴ T 2 sin2 θ = m2r2ω4, T 2 cos2 θ = m2g2

∴ T 2 sin2 θ + T 2 cos2 θ = T 2(sin2 θ + cos2 θ) = T 2 = m2r2ω4 + m2g2 = m2(r2ω4 + g2)
∴ T = m

√
r2ω4 + g2

Example.

Show θ = cos−1
[

(M+2m)g
Mlω2

]

Resolving vertical forces at B: T2 cos θ = mg ∴ T2 = mg
cos θ

Resolving forces at C:
Horizontal: T1 sin θ + T2 sin θ = Mrω2 (but r = l sin θ)
Vertical: Mg + T2 cos θ = T1 cos θ ∴ Mg + mg = T1 cos θ ∴ T1 = Mg+mg

cos θ = g
(

M+m
cos θ

)
T1 sin θ + T2 sin θ = Ml sin θω2

∴ T1 + T2 = Mlω2

∴ g(M+m)
cos θ + mg

cos θ = Mlω2

∴ (M+2m)g
cos θ = Mlω2

∴ cos θ = (M+2m)g
Mlω2



∴ θ = cos−1
(

(M+2m)g
Mlω2

)



Lecture 57
Motion Around a Curved Track

Example - from Coroneos Supplement Set 4E Q1ii

A motor car of mass 2t is rounding a curve of radius 840m on a level track at 90kmh−1.
What is the force of friction between the wheels and the ground?

Solution

Note frictional force supplies centripetal force.
90km/h= 90, 000

3600 = 25m/s.
Frictional forces = mv2

r = 2000×252

840 kgms−2 = 1488N.



Lecture 58
Motion around a banked track

If it is going slow, it will slide down.
If it is going fast, it will slide up.
There will be no frictional forces if it does not slide up or down. This is the ideal banking
of the track.
So ideal banking of a track implies F = 0.
We wish to determine the angle of banking to avoid side-slip.

N cos θ = mg.
horizontal forces: N sin θ = mv2

r

Eliminate N :
N sin θ
N cos θ = tan θ = ( mv2

r )

mg = v2

rg i.e., θ is independant of mass and is dependant on r and
velocity.

Example. A curved railway track of radius 690m is designed for trains travelling at an
average speed of 48 km/h. Find the ideal banking angle and how much should the outer
track be raised if the rail gauge=1.44m (distance between tracks).

Solution.

48km/h= 48(1000)
3600 = 13 1

3

tan θ = v2

rg = (13 1
3 )2

690×9.8

∴ θ = 1◦30′



sin 1◦30′ = h
1.44

∴ h = 1.44 sin 1◦30′ = 0.00377m= 3.77cm



Lecture 59
Circular Motion around a curved track (cont’d)

Example 1. A car of mass m rounds a curve of radius r banked at an angle θ to the
horizontal with speed v. if F is the sideways frictional force between the tyres and the
road and N is the normal reaction of the road on the tyre, show that F = mg cos θ(v2

gr −
tan θ), N = mg cos θ( v2

gr tan θ + 1).

Solution:

horizontally: mv2

r = N sin θ + F cos θ
vertically: N cos θ = mg + F sin θ

eliminate NNN : N sin θ = mv2

r − F cos θ
N cos θ = mg + F sin θ

N sin θ
N cos θ =

mv2
r −F cos θ

mg+F sin θ

sin θ
cos θ = tan θ =

mv2
r −F cos θ

mg+F sin θ

mg sin θ + F sin2 θ = mv2

r cos θ − F cos2 θ

F sin2 θ + F cos2 θ = mv2

r cos θ − mg sin θ

F = mg cos θ(v2

rg − tan θ).

Eliminate FFF : (mv2

r = N sin θ + F cos θ) × sin θ
N cos θ = mg + F sin θ) × cos θ

mv2

r sin θ = N sin2 θ + F cos θ sin θ. Subtract.
N cos2 θ = mg cos θ + F sin θ cos θ

mv2

r sin θ − N cos2 θ = N sin2 θ − mg cos θ

N sin2 θ + N cosθ = mv2

r sin θ + mg cos θ

N = mg cos θ(v2

rg tan θ + 1)

Example 2. A cart travels at vm/s along a curved track of radius Rm. Find the inclination
of the track to the horizontal if there is to be no tendancy for the car to slip sideways. If
the speed of the car is V m/s prove that the sideways frictional force on the wheels of the
car of mass m is mg(V 2−v2)√

v4+R2g2
.



Solution.

horizontally: mv2

R = N sin θ.
vertically: mg = N cos θ

eliminate NNN : N sin θ
N cos θ =

mv2
R

mg . So tan θ = v2

Rg ∴ θ = tan−1 v2

gR .

horizontally: mV 2

R = N sin θ + F cos θ
vertically: mg = N cos θ + F sin θ

F = mg cos θ(V 2

Rg − tan θ) = mgRg√
v4+R2g2

(V 2

Rg − v2

Rg ) = mg(V 2−v2)√
v4+R2g2


