

THE HILLS GRAMMAR SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

2003

MATHEMATICS

EXTENSION 2

Time Allowed:

Three hours (plus 5 minutes reading time)

Teacher Responsible:

Mr D Price

SPECIAL INSTRUCTIONS:

- This paper contains 8 questions. ALL questions to be attempted.
- ALL questions are of equal value.
- ALL necessary working should be shown in every question in the booklets provided.
- Start each question in a new booklet.
- A table of standard integrals is supplied at the back of this paper.
- Board approved calculators may be used.
- Hand up your paper in ONE bundle, together with this question paper.
- ALL HSC course outcomes are being assessed in this task. The Course Outcomes are listed
 on the back of this sheet.

Students are advised that this is a Trial Examination only and cannot in any way guarantee the content or the format of the Higher School Certificate Examination.

(a) Evaluate

8

(i)
$$\int_0^{\frac{\pi}{2}} \sin^2 \theta \cos \theta \, d\theta$$

(ii)
$$\int_0^1 \frac{x}{\sqrt{x+1}} \, dx$$

(iii)
$$\int_0^1 \tan^{-1} x \, dx$$

(b) (i) Express
$$\frac{3x+1}{(x+1)(x^2+1)}$$
 in the form $\frac{A}{x+1} + \frac{Bx+C}{x^2+1}$.

(ii) Hence, or otherwise, find
$$\int \frac{3x+1}{(x+1)(x^2+1)} dx$$
.

(c) By using the substitution
$$t = \tan \frac{x}{2}$$
, evaluate $\int_0^{\frac{\pi}{2}} \frac{dx}{\sin x + \cos x + 1}$.

(a) Let
$$z = 2(\cos \frac{2\pi}{9} + i \sin \frac{2\pi}{9})$$

8

(i) Write down the modulus and argument of the complex numbers

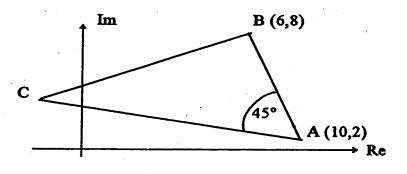
$$z$$
, \bar{z} , z^2 , and $\frac{1}{z}$

- (ii) Hence, or otherwise, clearly plot the points on an Argand diagram corresponding to z, \bar{z} , z^2 , and $\frac{1}{z}$ labelling them A, B, C and D respectively.
- (b) Find the two square roots of -3 + 4i expressing each root in the form a + ib where a, b are real.

4

(c)

3



(NOT TO SCALE)

 \triangle ABC is drawn on the Argand plane where angle BAC = 45°, A represents the complex number 10 + 2i and B represents 6 + 8i.

If the length of side AC is twice the length of AB then find the complex number that point C represents.

(a) For the hyperbola $9x^2 - 16y^2 = 144$ find,

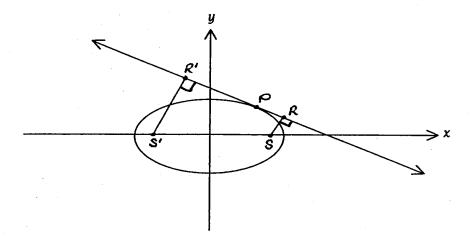
7

- (i) eccentricity
- (ii) co-ordinates of the foci
- (iii) equations of the directrices
- (iv) equation of the asymptotes

Hence, sketch this hyperbola showing the foci, directrices and asymptotes.

(b)

8

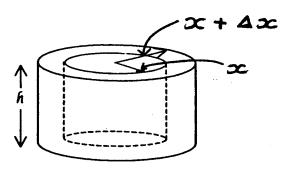


Consider the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where a > b > 0.

- (i) Show that the tangent to the ellipse at the point $P(a \cos \theta, b \sin \theta)$ has equation $b x \cos \theta + a y \sin \theta = a b$.
- (ii) R and R' are the feet of the perpendiculars from the foci S and S' on to the tangent at P. Show that $SR \cdot S'R' = b^2$.

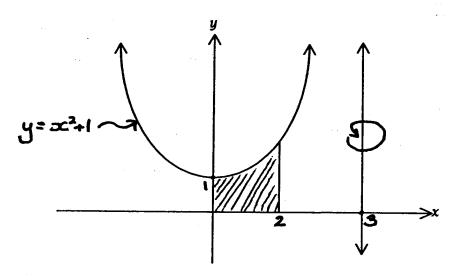
8

(a) (i)



Show that the volume of a cylindrical shell of height h cm with inner and outer radii x cm and $(x + \Delta x)$ cm respectively is $2\pi x h \Delta x$ cm³ when terms involving $(\Delta x)^2$ can be neglected.

(ii)

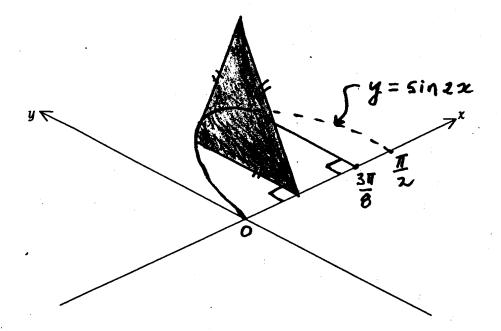


The region bounded by the curve $y = x^2 + 1$, the line x = 2 and the co-ordinate axes is rotated about the line x = 3 to form a solid of revolution.

Show that the volume V of the solid is given by $V = 2\pi \int_0^2 (3-x)(x^2+1) dx$.

Hence find V.

(b)



The base of a certain solid is the region between the x-axis and the curve $y = \sin x$ between x = 0 and $x = \frac{3\pi}{8}$.

Each plane section of the solid perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid. An example of such a plane section is shown in the diagram above.

Show that the volume V of this solid is given by $V = \frac{\sqrt{3}}{4} \int_0^{\frac{3\pi}{8}} \sin^2 2x \ dx$.

Hence, evaluate V correct to two significant figures.

7

(a) (i) On the same diagram, sketch the graphs (without the use of calculus) of:

7

$$y = \frac{1}{x^2 + 1}$$
 and $y = \frac{x^2}{x^2 + 1}$.

Mark on your diagram the co-ordinates of the intersection points of these two graphs.

(ii) On the diagram in (a)(i) above, shade the region R where

$$\frac{1}{x^2+1} \ge \frac{x^2}{x^2+1}$$
. Find the area of R.

(b) Let the functions g(x) and f(x) be defined as follows:

$$g(x) = \frac{1}{4} (4+x)(2-x)$$

$$f(x) = \begin{cases} g(x) & \text{for } x < 0 \\ g(-x) & \text{for } x \ge 0 \end{cases}$$

- (i) By first sketching y = g(x), make a neat sketch of y = f(x) showing the co-ordinates of all critical points (i.e. where f'(x) = 0 or f'(x) is undefined).
- (ii) Hence, or otherwise, sketch the graph of y = f'(x).
- (c) By considering symmetry, draw a neat sketch of the graph |x| |y| = 1.

(a) A particle moving along the x-axis has position x(t) at time t seconds. If v(x) is the velocity of this particle at position x then show that

$$\frac{d^2x}{dt^2} = v\frac{dv}{dx}$$

(b) A particle of mass 1 kg is moving along the x-axis and experiences a resistive force of magnitude kv^2 where k > 0 is a constant and v is the speed of the particle.

13

- (i) Find v as a function of time, t, given that the initial speed is 1 ms⁻¹.
- (ii) Find v as a function of position, x, given that at x = 0 the speed is 1 ms⁻¹.
- (iii) Suppose now that a variable **pushing** force of magnitude $\frac{c}{v}$ (where c > 0 is a constant) as well as the **resistive** force of magnitude kv^2 is acting on this particle.
 - (a) Show that the terminal velocity V is given by $V^3 = \frac{c}{k}$.
 - (β) Show that $\frac{dv}{dx} = c(\frac{1}{v^2} \frac{v}{V^3})$.
 - (y) Hence, find v as a function of x, given that $v = \frac{V}{2}$ when x = 0.

(a) (i) Let the polynomial $P(x) = (x - \alpha)^3 Q(x)$ where Q(x) is also a polynomial and α is a real zero of P(x).

5

Show that $P'(\alpha) = P''(\alpha) = 0$.

(ii) Hence, or otherwise, solve the equation

$$2x^4 + 9x^3 + 6x^2 - 20x - 24 = 0$$

given that it has a triple root (i.e. a root of multiplicity 3).

(b) Let α , β , γ be the roots of the equation $x^3 - 5x + 7 = 0$.

5

- (i) Find $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$.
- (ii) Find the equation whose roots are $2\alpha 1$, $2\beta 1$, $2\gamma 1$. Hence, or otherwise, find the value of

$$(2\alpha-1)(2\beta-1)+(2\beta-1)(2\gamma-1)+(2\alpha-1)(2\gamma-1)$$
.

(c) Let P(x) be a polynomial with $P(-\frac{1}{2}) = 3$. When P(x) is divided by (x-4) the remainder is -1.

5

Find the polynomial R(x) of minimum degree such that P(x) = (x-4)(2x+1)Q(x) + R(x) where Q(x) is a polynomial.

(a) Let
$$I_n = \int_0^1 (1-t^2)^{\frac{n-1}{2}} dt$$
 where $n = 0, 1, 2, ...$

11

- (i) Show that $t^2(1-t^2)^{\frac{n-3}{2}} = (1-t^2)^{\frac{n-3}{2}} (1-t^2)^{\frac{n-1}{2}}$
- (ii) Using integration by parts, show that $nI_n = (n-1)I_{n-2}$ for n = 2, 3, 4, ...
- (iii) Let $J_n = nI_nI_{n-1}$ for n = 1, 2, 3, ...

By using the principle of mathematical induction, prove that

$$J_n = \frac{\pi}{2}$$
 for $n = 1, 2, 3, ...$

- (iv) Briefly explain why $0 < I_n < I_{n-1}$ for n = 1, 2, 3, ...
- (v) Deduce that $\sqrt{\frac{\pi}{2(n+1)}} < I_n < \sqrt{\frac{\pi}{2n}}$ for n = 1, 2, 3, ...

(b) Show that
$$\sum_{r=1}^{r-n} \frac{r\binom{n}{r}}{\binom{n}{r-1}} = \frac{n}{2}(n+1)$$

4

END OF EXAMINATION