HURLSTONE AGRICULTURAL HIGH SCHOOL

MATHEMATICS – EXTENSION TWO

TRIAL EXAMINATION

2011

ASSESSMENT TASK 4

Examiners ~ G Huxley, G Rawson

GENERAL INSTRUCTIONS

- Reading Time 5 minutes.
- Working Time 3 hours.
- Attempt all questions.
- All necessary working should be shown in every question.
- This paper contains eight (8) questions.
- Marks may not be awarded for careless or badly arranged work.
- Board approved calculators may be used.
- Each question is to be started in a new booklet.
- This examination paper must **NOT** be removed from the examination room.

STUDENT NAME:	 	
TEACHER:		

(a) The diagram shows the graph of y = f(x)

Draw separate one third page sketches of the following

(i)
$$y = \frac{1}{f(x)}$$

(ii)
$$y^2 = f(x)$$

(iii)
$$y = 2^{f(x)}$$

(iv)
$$y = f\left(\frac{1}{x}\right)$$

Question 1 continues on the next page

- (b) Consider the curve $f(x) = \ln(2 + 2\cos(2x))$, $-2\pi \le x \le 2\pi$.
 - (i) Show that the function f is even and the curve y = f(x) is concave down for all values of x in its domain.

3

(ii) Sketch, using a third of a page, the graph of the curve y = f(x)

2

(c) Find the coordinates of the points where the tangent to the curve $x^2 + 2xy + 3y^2 = 18$ is horizontal.

QUESTION TWO 15 marks Start a SEPARATE booklet.

Marks

(a) Using the substitution $u = e^x + 1$ or otherwise,

evaluate
$$\int_0^1 \frac{e^x}{(1+e^x)^2} dx.$$

(b) Find
$$\int \frac{1}{x \ln x} dx$$
.

(c) (i) Find a, b, and c, such that

$$\frac{16}{(x^2+4)(2-x)} = \frac{ax+b}{x^2+4} + \frac{c}{2-x}.$$

(ii) Find
$$\int \frac{16}{(x^2+4)(2-x)} dx$$
.

(d) Using integration BY PARTS ONLY, evaluate

$$\int_{0}^{1} \sin^{-1} x \ dx$$
.

(e) Use the substitution $t = \tan \frac{\theta}{2}$ to show that :

$$\int_0^{\frac{\pi}{2}} \frac{d\theta}{4\sin\theta - 2\cos\theta + 6} = \frac{1}{2}\tan^{-1}\left(\frac{1}{2}\right).$$

QUESTION THREE 15 marks Start a SEPARATE booklet.

Marks

(a) Find all the complex numbers z=a+ib, where a and b are real, such that $|z|^2+5\bar{z}+10i=0$.

3

- (b) $z_1 = 1 + i\sqrt{3}$ and $z_2 = 1 i$ are two complex numbers.
 - (i) Express z_1 , z_2 and $\frac{z_1}{z_2}$ in modulus-argument form.

3

2

(ii) Find the smallest positive integer n such that $\frac{z_1^n}{z_2^n}$ is imaginary. For this value of n, write the value of $\frac{z_1^n}{z_2^n}$ in the form bi where b is a real number.

On an Argand Diagram shade the region where both $|z-1| \le 1$ and $0 \le \arg z \le \frac{\pi}{6}$.

3

(ii) Find the perimeter of the shaded region.

(c)

(i)

2

(d) On an Argand Diagram the points A, B, and C represent the complex numbers α , β , and γ respectively. ΔABC is equilateral, named with its vertices taken anticlockwise.

Show that
$$\gamma - \alpha = \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)(\beta - \alpha)$$

(a) Show that $4x^2 + 9y^2 + 16x + 18y - 11 = 0$ represents an ellipse.

1

(ii) Find the eccentricity and hence, the coordinates of its foci and the equations of its directrices.

2

(b) The tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is given by the equation Ax + By + C = 0.

Find the coordinates of the point of contact between the hyperbola and the tangent.

3

(c) Show that the equation of the normal to the curve $xy = c^2$ at the point

$$P\left(cp, \frac{c}{p}\right)$$
 is given by $p^3x - py = c\left(p^4 - 1\right)$.

3

(d) The position of a particle moving in the Cartesian plane at a time *t* is given by the parametric equations.

$$x = 5\cos t$$

$$y = 12 \sin t$$

(i) Eliminate t from the two equations above.

1

(ii) Sketch the path of the particle in the x-y plane.

1

(iii) Without using the area formula for an ellipse, show by integration that the area of the ellipse is 60π square units.

QUESTION FIVE 15 marks Start a SEPARATE booklet.

Marks

- (a) Let α , β , and γ be the solutions of $x^3 4x^2 + 2x + 5 = 0$.
 - (i) Find $\alpha^2 + \beta^2 + \gamma^2$.
 - (ii) Find $\alpha^3 + \beta^3 + \gamma^3$
 - (iii) Write an equation with roots $\alpha + 1$, $\beta + 1$, $\gamma + 1$.
- (b) Find a polynomial P(x) with real coefficients having 2i and 1-3i as zeroes.
- (c) By considering $z^9 1$ as the difference of two cubes, or otherwise, write $1 + z + z^2 + z^3 + z^4 + z^5 + z^6 + z^7 + z^8$ as a product of two polynomials with real coefficients, one of which is a quadratic.
 - (ii) Solve $z^9 1 = 0$ and determine the six solutions of $z^6 + z^3 + 1 = 0$.
 - (iii) Hence show that $\cos \frac{2\pi}{9} + \cos \frac{4\pi}{9} = \cos \frac{\pi}{9}$

(a) A solid shape has an elliptical base on the *xy*-plane as shown below. Sections of the solid taken perpendicular to the *x*-axis are equilateral triangles. The major and minor axes of the ellipse are of lengths 6 metres and 2 metres respectively.

- (i) Write down the equation of the ellipse.
- (ii) Show that the volume ΔV of a slice taken at x = d is given by

$$\Delta V \approx \frac{\sqrt{3}\left(9 - d^2\right)}{9} \Delta x$$

(iii) Find the volume of this solid.

Question 6 continues on the next page

(b) The region bounded by $y = \frac{1}{x}$, $y = \frac{x^2}{8}$ and x = 1 is rotated about the line x = 1.

- (i) Use the method of cylindrical shells to find an integral which gives the volume of the resulting solid of revolution.
- (ii) Find the volume of this solid of revolution.
- (c) The sketch below shows the region enclosed by the curve $y = x^{\frac{1}{3}}$, the x axis and the ordinate x = 8.

Find the volume generated when this region is rotated about the line x = 8.

3

QUESTION SEVEN 15 marks Start a SEPARATE booklet.

Marks

(a) (i) How many ways can a doubles tennis game be organised, given a group of four players?

141 113

1

(ii) In how many ways can two games of doubles tennis be organised, given a group of eight players?

1

- (b) Use mathematical induction, or otherwise, to prove the following:
 - (i) 1.1!+2.2!+3.3!+...+n.n!=(n+1)!-1, for $n \ge 1$.

3

(ii) If $u_n = 9^{n+1} - 8n - 9$, show that $u_{n+1} = 9u_n + 64n + 64$, and hence show that u_n is divisible by 64 for $n \ge 1$.

4

(c) (i) Let $z = \cos \theta + i \sin \theta$. Show that $2\cos \theta = z + z^{-1}$.

1

(ii) Hence or otherwise show that $16\cos^4\theta = 2\cos 4\theta + 8\cos 2\theta + 6$.

2

(iii) Use the substitution $x=2\sin\theta$ to evaluate $\int_0^2 (4-x^2) dx$.

QUESTION EIGHT 15 marks Start a SEPARATE booklet.

Marks

(a) The region R is bounded by the curve $y = \frac{x}{x+1}$, the x-axis and the vertical line x = 3.

Find the exact volume generated when R is rotated about the x-axis.

- (b) (i) $I_n = \int x^n e^{ax} dx$, where a is a constant.

 Prove that $I_n = \frac{x^n e^{ax}}{a} \frac{n}{a} I_{n-1}$.
 - (ii) Hence find the value of $\int_0^1 x^3 e^{2x} dx$.

If $ST \parallel AB$ and TM is a tangent, prove that $\Delta TMB \parallel \Delta TAS$.

Question 8 continues on the next page

(d) Two circles of equal radii intersect at A and B. A variable line through A meets the two circles again at P and Q.

- (i) Give the reason why $\angle QPB = \angle PQB$
- (ii) M is the midpoint of PQ. Prove that $BM \perp PQ$
- (iii) What is the locus of M as the line PAQ varies?

END OF EXAMINATION

Standard Integrals Sheet