Mrs	Collett
Mrs	Kerr

Name:	• • • • • • • • • • • • • • • • • • • •	 	• • • • • • • • • • • • • • • • • • • •	
Teache	r:	 		• • • • • • • • • • • • • • • • • • • •

HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

2014

Mathematics Extension 2

Time Allowed: 3 hours

General Instructions

- Reading time 5 minutes.
- Working time 3 hours.
- Write using black or blue pen. Black pen is preferred.
- Board approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- In Questions 11-16, show relevant mathematical reasoning and/or calculations.
- Start each question in a **new** booklet.

Total Marks – 100

Section I Pages 1-4

10 marks

- Attempt all Questions 1-10
- Allow about 15 mins for this section

Section II

Pages 5-12

90 marks

- Attempt Questions 11-16
- Allow about 2 hour 45 minutes for this section

Mark	/100	
Highest Mark	/100	
Rank		

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section.

Use the multiple choice answer sheet for Questions 1-10.

1 If $(a+bi)^2 = i$, then what are possible values for $a, b \in \mathbb{R}$?

(A)
$$a = \frac{1}{4}, b = \frac{1}{4}$$

(B)
$$a = -\frac{1}{\sqrt{2}}, b = \frac{1}{\sqrt{2}}$$

(C)
$$a = \frac{1}{\sqrt{2}}, b = \frac{1}{\sqrt{2}}$$

(D)
$$a = \frac{1}{2}, b = \frac{1}{2}$$

The polynomial $P(x) = x^3 + 3x^2 - 24x + 28$ has a double zero.

What is the value of the double zero?

(A)
$$-7$$

3 Which graph shows y = 1 + x + |x|?

(B)

(C)

(D)

- 4 The graph of the ellipse $\frac{(x-1)^2}{9} + \frac{y^2}{4} = 1$ and the graph of the hyperbola $x^2 y^2 = 4$ have
 - (A) no points in common.
 - (B) 1 point in common.
 - (C) 2 points in common.
 - (D) 3 points in common.

$$\int \sin^{-1} 2x \, dx =$$

(A)
$$x \sin^{-1} 2x + \frac{1}{4} \sqrt{1 - 4x^2} + C, |x| \ge -1$$

(B)
$$x \sin^{-1} 2x - \frac{1}{4} \sqrt{1 - 4x^2} + C, |x| \ge -1$$

(C)
$$x \sin^{-1} 2x + \frac{1}{2} \sqrt{1 - 4x^2} + C, |x| \ge -1$$

(D)
$$x \sin^{-1} 2x - \frac{1}{2} \sqrt{1 - 4x^2} + C$$
, $|x| \ge -1$

- 6 Which of the following would be neither odd nor even?
 - (A) $y = x^2 \sin x$
 - (B) $y = \sin(x^2)$
 - (C) $y = (\sin x)^2$
 - (D) $y = x^2 + \sin x$
- 7 What is the exact value of $\left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}i\right)^{100}$?
 - (A) 1
 - (B) -1
 - (C) $\frac{1}{2^{50}}$
 - (D) $-\frac{1}{2^{50}}$
- 8 If $\frac{3x-19}{(x+3)(2x-1)} = \frac{a}{x+3} + \frac{b}{2x-1}$, then find the values of a and b.
 - (A) a = -4, b = 5
 - (B) a = -4, b = -5
 - (C) a = 4, b = 5
 - (D) a = 4, b = -5

On the diagram P and Q represent complex numbers z and w respectively. Triangle OPQ is right angled and isosceles.

Which of the following is false?

(A)
$$|z|^2 + |w|^2 = |z + w|^2$$

$$(B) z^2 - w^2 = 0$$

$$(C) z^2 + w^2 = 0$$

(D)
$$w = iz$$

10 The ellipse $x^2 + 2ax + 2y^2 + 4by + 16 = 0$ has its centre at (3, -2). Find the values of a and b.

(A)
$$a = -3, b = -2$$

(B)
$$a = 2, b = -3$$

(C)
$$a = -3, b = 2$$

(D)
$$a = 3, b = 2$$

Section II

90 marks

Attempt Questions 11-16

Allow about 2 hours and 45 minutes for this section.

Answer each question in the appropriate writing booklet. Extra booklets are available.

In Questions 11 - 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11. (15 marks). Use a Separate Booklet. Marks Use the substitution $u = 4 + \sin x$ to find 2 (a) $\int \frac{\sin x \cos x}{4 + \sin x} \, dx.$ Let $w = -1 + \sqrt{3}i$ and z = 1 - i. **(b)** (i) Find wz in the form a+ib. 1 (ii) 2 Find w and z in mod-arg form. Hence, find the exact value of $\sin \frac{5\pi}{12}$. 2 Let polynomial $P(x) = ax^6 - bx^5 + 1$. (c) (i) State the conditions for α to be a zero of multiplicity two of P(x). 1

(d) The line x = 1 is a directrix and the point (2,0) is a focus of the conic whose eccentricity is $\sqrt{2}$.

Given that P(x) is divisible by $(x+1)^2$ find a and b.

(i) Derive the equation of the conic.

(ii)

3

3

(ii) Prove that it is a rectangular hyperbola.

1

(a) Find $\int \frac{\ln x}{x^2} dx$.

2

(b) The graph of the function y = f(x), x < a is shown below.

Sketch the following curves on separate half-page diagrams.

(i)
$$y = |f(x)|$$
.

1

(ii)
$$y = f(|x|)$$

1

(iii)
$$y = \frac{1}{f(x)}$$

2

(c) Let C be the curve $3e^{x-y} = x^2 + y^2 + 1$. Find the equation of the tangent to C at the point (1,1). 3

(d) (i) Expand $(a-b)^3$.

1

(ii) Solve $z^3 = -1$.

2

(iii) Express the polynomial $z^3 - 3iz^2 - 3z + 1 + i$ in the form $(z+p)^3 + q$ where p is an imaginary number and q is a real number.

1

(iv) Hence solve $z^3 - 3iz^2 - 3z + 1 + i = 0$ giving the solution in the form z = x + iy where $x, y \in \mathbb{R}$.

2

(a) When the polynomial $p(x) = x^4 + ax + 2$ is divided by $x^2 + 1$ the remainder is 2x + 3. Find the value of a.

2

(b) Using the substitution $t = \tan \frac{x}{2}$, find $\int \frac{\tan x}{1 + \cos x} dx$.

3

(c) Consider the region bounded by the curve $y = x^2 - 6x + 8$ and the x-axis. Use the method of cylindrical shells to find the volume of the solid formed if the region is rotated about the y-axis to form a solid of revolution.

3

(d) ABCD is a cyclic quadrilateral. Diagonals AC and BD intersect at right angles at P. M is the midpoint of BC. MP produced meets AD at Q. Let $\angle MCP = x$.

- (i) Show $\angle MCP = \angle CPM$.
- (ii) Show $MQ \perp AD$.

2

Question 13 continues on page 9

3

(e) The ellipse shown below passes through point P(-2,6). The centre of the ellipse lies on the x-axis, and the ellipse passes through the points (-6,0) and (10,0).

The line shown is y = x - 2. This line intersects the ellipse at Q.

What is the x coordinate of point Q?

- (a) (i) Derive the equation of the tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at point $P(x_1, y_1)$.
 - (ii) The tangents to the ellipse $x^2 + 4y^2 = 4$ at the points $P(2\cos\theta, \sin\theta)$ and $Q(2\cos\phi, \sin\phi)$ are at right angles to each other.

Show that $4 \tan \theta \tan \phi = -1$.

(b) If w is one of the complex roots of $z^3 = 1$, simplify $(1-w)(1-w^2)(1-w^4)(1-w^8).$ 3

(c) (i) If
$$I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx$$
 prove that $I_n + I_{n-2} = \frac{1}{n-1}$, $n > 2$.

(ii) Hence, evaluate $\int_{0}^{\frac{\pi}{4}} \tan^{5} x \, dx.$ 2

(d) Sketch the locus of z if $\frac{z-2i}{z-1}$ is purely imaginary.

(a) The base of a solid is given by the region in the xy-plane enclosed by the curve $y = x^2$ and $y = 8 - x^2$.

Each cross-section perpendicular to the x-axis is a square.

- (i) Show that the area of the square cross-section at x = h is $(8-2h^2)^2$.
- (ii) Hence, find the volume of the solid.
- **(b)** Show that $\int_0^1 \frac{dx}{x^2 x + 1} = \frac{2\sqrt{3}\pi}{9}$.
- (c) Let $f(x) = \frac{4}{x-1} \frac{4}{x+1} 1$, where $x \neq \pm 1$.
 - (i) Find the x and y intercepts of the graph of y = f(x).
 - (ii) Show that y = f(x) is an even function.
 - (iii) Find the equation of the horizontal asymptote.
 - (iv) Sketch the graph of y = f(x).
 - (v) Let S be the area bound by the graph of y = f(x), the straight lines $x = 3, x = a \ (a > 3)$ and y = -1.

Find S in terms of a and deduce that $S < 4 \ln 2$.

- (a) The locus of w is described by the equation |w+3| = |w-2+5i|.
 - (i) Sketch on an Argand Diagram the locus of w.

2

(ii) Find the Cartesian equation of the locus of w.

2

- **(b)** (i) Given that $\frac{1}{n} \frac{1}{n+1} = \frac{1}{n(n+1)}$ explain why $\frac{1}{(n+1)^2} < \frac{1}{n(n+1)}, n \in \mathbb{Z}^+$.
 - (ii) Using induction, prove $S_n = \sum_{r=1}^n \frac{1}{r^2} \le 2 \frac{1}{n}, n \ge 1.$
- (c) Consider the quadratic equation $x^2 x + k = 0$ where k is a real number. The equation has 2 distinct positive roots α and β .
 - (i) Show $0 < k < \frac{1}{4}$.

2

(ii) Show that $\frac{1}{\alpha^2} + \frac{1}{\beta^2} > 8$.

2

- (d) Given $I = \int_{-1}^{1} \frac{x^2 e^x}{e^x + 1} dx$ and $J = \int_{-1}^{1} \frac{x^2}{e^x + 1} dx$.
 - (i) Use the substitution u = -x in I to show I = J.

1

(ii) Hence evaluate I and J.

2