

2002 **HIGHER SCHOOL CERTIFICATE** TRIAL EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
 Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks -120

- Attempt questions 1—8
- All questions are of equal value, the mark value is shown beside each part.

Examiner: D.M.Hespe

This is an assessment task only and does not necessarily reflect the content or Note:

format of the Higher School Certificate.

Total marks - 120 Attempt Questions 1-8 All questions are of equal

All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Marks

Question 1 (15 marks) Use a SEPARATE writing booklet.

(a) Find

(i)
$$\int \sin^{-1} x \, dx$$

(ii)
$$\int \frac{x}{1+x^4} dx$$

(iii)
$$\int \tan^3 x \, dx$$

(b) Evaluate
$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \cos x}$$
 using the substitution $t = \tan \frac{x}{2}$.

(c) Given that
$$I_n = \int_{1}^{e} (\ln x)^n dx$$
, $n = 0, 1, 2, ...$, show that $I_n = e - nI_{n-1}$.

(d) If
$$x = \frac{\pi}{4} - u$$
,

(i) Show that
$$\tan x = \frac{1 - \tan u}{1 + \tan u}$$
.

(ii) Hence or otherwise, show that
$$\int_{0}^{\frac{\pi}{4}} \ln(1 + \tan x) dx = \frac{\pi}{8} \ln 2.$$

Question 2 (15 marks) Use a SEPARATE writing booklet.

(a) Explain the flaw in this "proof" that
$$i = -i$$
.

$$i = i$$

$$\sqrt{-1} = \sqrt{-1}$$

$$\sqrt{\frac{-1}{1}} = \sqrt{\frac{1}{-1}}$$

$$\frac{\sqrt{-1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{-1}}$$

$$\frac{i}{1} = \frac{1}{i} = \frac{-(-1)}{i} = \frac{-i^2}{i} = -i$$

$$\therefore i = -i$$

(b) u = -3 - 4i and v = 1 - i are two complex numbers. Express in the form x+iy, where x and y are real:

(i)
$$\overline{u} - v$$

(ii)
$$\frac{2u}{v}$$

(iii)
$$\sqrt{u}$$

(c) On an Argand diagram sketch the region defined by
$$\{z\colon -\frac{\pi}{6} \leq \arg z \leq \frac{\pi}{6} \ \cap \ |z| \leq 1\}.$$

- (d) (i) If a, b are the complex numbers represented by the points A and B on an Argand diagram, what geometrical properties correspond to the modulus and argument of $\frac{b}{a}$?
 - (ii) Show that, if the four points representing the complex numbers z_1 , z_2 , 4 z_3 , and z_4 are concyclic, the fraction $\frac{(z_1-z_2)(z_3-z_4)}{(z_3-z_2)(z_1-z_4)}$ must be real.

Marks

Question 3 (15 marks) Use a SEPARATE writing booklet.

- (a) Reduce to irreducible factors over the complex field: $x^3 4x^2 + 7x 6$.
- 3

(b) Find the polynomial f(x) of the fourth degree such that f(0) = f(1) = 1, f(2) = 13, f(3) = 73 and f'(0) = 0.

- 4
- (c) (i) Prove that if P(x) has a root of multiplicity m, then P'(x) has a root of multiplicity m-1.
- 2
- (ii) Find the value of c if the polynomial $5x^5-3x^3+c$ has a positive repeated root.
- 3
- (d) Let α , β , γ be the roots of the equation $x^3 + px + q = 0$, where $q \neq 0$. Find, in terms of p and q, the coefficients of the cubic equation whose roots are α^{-1} , β^{-1} , and γ^{-1} .
- 3

Question 4 (15 marks) Use a SEPARATE writing booklet.

(a) Solve the simultaneous equations:

4

$$x^2 + xy + y^2 = 7,$$

$$2x^2 - xy + y^2 = 28.$$

(b) Show that if $b^2 < 4ac$, the value of the function $ax^2 + bx + c$ will have the same sign as a for all real values of x.

2

(c) (i) By considering the expression $x^2 - 2xy + 5y^2 + 2x - 14y + k$ as a quadratic function of x, show that it is positive for all real values of x and y if k > 10.

4

(ii) Show that if k = 10, the expression may be written in the form $(x+py+q)^2 + (ry+s)^2$, and hence find the simultaneous values of x and y for which the expression is zero.

4

(iii) Deduce the minimum value of the expression for a general value of k.

1

Question 5 (15 marks) Use a SEPARATE writing booklet.

- (a) A particle P of mass m starts from rest at a point O and falls under gravity in a medium where the resistance to its motion has magnitude mkv, v being the speed of the particle and k is a constant.
 - (i) Draw a diagram to show the *forces* acting on the particle during this downward path, and hence write down the equation of motion.
 - (ii) Show that the expression for its velocity v at any time t is given by $v = \frac{g}{k} (1 e^{-kt}).$
 - (iii) Explain what is meant by the *terminal velocity* and find an expression for the terminal velocity V_T .
- (b) A second particle Q, also of mass m, is fired vertically upwards from O with initial speed u, so that P and Q leave O simultaneously.
 - (i) Draw a diagram to show the *forces* acting on the particle during this downward path, and hence write down the equation of motion.
 - (ii) Find an expression for the time t when Q comes to rest.
- (c) Show that, at the instant Q comes to rest, the velocity of P is given by: $v = \frac{V_T u}{V_T + u}.$

Marks

Question 6 (15 marks) Use a SEPARATE writing booklet.

- (a) Show that if x is real, the expression $\frac{(x-2)^2}{x-1}$ cannot take any value between -4 and 0.
 - (ii) Sketch the graph of the expression. 3
 - (iii) Show that the equation $\frac{(x-2)^2}{x-1} = \frac{k}{x}$ has three real roots if k is positive, but only one real root if k is negative.
- (b) For $z = r(\cos\theta + i\sin\theta)$, find r and the smallest positive value of θ which satisfy the equation $2z^3 = 9 + 3\sqrt{3}i$.
- (c) Using the method of shells, or otherwise, find the volume of the solid formed when the region bounded by the curve $y = x^2 + 1$ and the x-axis between x = 0 and x = 2 is rotated about the y-axis.
- (d) Explain why, if $\lim_{n \to \infty} \left(\sqrt{n^2 + n} n \right) = \lim_{n \to \infty} \left(n \times \sqrt{1 + \frac{1}{n}} n \right)$, then the limit is not zero, but a half.

Question 7 (15 marks) Use a SEPARATE writing booklet.

- (a) Find the rational roots of $x^4 + 2x^3 17x^2 18x + 32 = 0$ using the substitution $y = x^2 + x$, or otherwise.
- (b) (i) Prove that the medians of a triangle are concurrent at a point which is a point of trisection of each median. [A *median* of a triangle is a line from a vertex to the mid point of the opposite side.]
 - (ii) If the medians of triangle ABC meet at G, and AG is produced to K so that AG = GK, prove that the triangle BGK is similar to the triangle whose sides are equal in length to the three medians.
 - (iii) Also show that the area of the triangle whose sides are equal in length to the medians is $\frac{3}{4}$ of the area of triangle ABC.

Barcan sand dunes are parabolic in plan view and are triangular in cross section with the inner face having an angle of repose of 35° to the horizontal and the outer face at 10° to the horizontal. The figure above shows one such dune (dimensions are in metres). Calculate the volume of sand.

Question 8 (15 marks) Use a SEPARATE writing booklet.

- (a) (i) Show that the length, ℓ , of a curve, y = f(x), is given by $\ell = \int \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx.$
 - (ii) A circular disc, centre A, of radius a, rolls without slipping along the axis of x. Initially the point P on the edge of the disc is at the origin of coordinates. Prove that, when the radius AP has turned through an angle θ , the coordinates of P are: $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$.
 - (iii) When P is again in contact with the axis of x, prove that the length of its path is 8a.
- (b) Sum the series, n being a positive integer, $1 + x\cos x + x^2\cos 2x + x^3\cos 3x + \dots + x^n\cos nx.$
- (c) (i) Prove that, in general, three normals can be drawn from any point to a parabola. P_3 P_4 P_4 P_5 P_6 P_7 P_8 P_8 P
 - (ii) Also show that if P_1 , P_2 , and P_3 have coordinates (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) respectively, then $x_1 + x_2 + x_3 = 0$.

End of paper

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^{2} - a^{2}}} dx = \sin^{-1} \frac{x}{a}, \quad a1 > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln(x + \sqrt{x^{2} - a^{2}}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln(x + \sqrt{x^{2} + a^{2}})$$

NOTE: $\ln x = \log_e x$, x > 0

SBHS