

FORM VI

MATHEMATICS EXTENSION 2

Examination date

Wednesday 1st August 2007

Time allowed

3 hours (plus 5 minutes reading time)

Instructions

All eight questions may be attempted.

All eight questions are of equal value.

. All necessary working must be shown.

Marks may not be awarded for careless or badly arranged work.

Approved calculators and templates may be used.

A list of standard integrals is provided at the end of the examination paper.

Collection

Write your candidate number clearly on each booklet.

Hand in the eight questions in a single well-ordered pile.

Hand in a booklet for each question, even if it has not been attempted.

If you use a second booklet for a question, place it inside the first.

Keep the printed examination paper and bring it to your next Mathematics lesson.

Checklist

SGS booklets: 8 per boy. A total of 750 booklets should be sufficient.

Candidature: 71 boys.

Examiner

DS

SGS Trial 2007 Form VI Mathematics Extension 2 Page 2

QUESTION ONE (15 marks) Use a separate writing booklet.

(a) Show that
$$\int_0^{\frac{\pi}{6}} x \cos x \, dx = \frac{\pi}{12} + \frac{\sqrt{3}}{2} - 1$$
.

(b) Find
$$\int \frac{1}{2+\sqrt{x}} dx$$
 by using the substitution $\sqrt{x} = u$.

(c) Find
$$\int \tan^4 x \, dx$$
.

(d) (i) Show that
$$\int_0^1 \frac{1}{(5x+3)(x+1)} dx = \frac{1}{2} \ln \frac{4}{3}.$$

(ii) Hence find
$$\int_0^{\frac{\pi}{2}} \frac{1}{4\sin x - \cos x + 4} dx$$
 using the substitution $t = \tan \frac{x}{2}$.

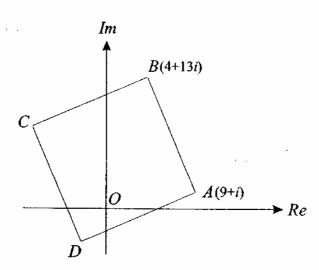
SGS Trial 2007 Form VI Mathematics Extension 2 Page 3

QUESTION TWO (15 marks) Use a separate writing booklet.

Marks

- (a) Given that $z = \frac{2+i}{1-i}$, find $z + \frac{1}{z}$ in the form a + bi, where a and b are real.
- (b) Find the two square roots of 8i in the form a + bi, where a and b are real.
- (c) Let $z = 1 + i \tan \theta$, where $0 < \theta < \frac{\pi}{2}$. Find, in simplest form, expressions for:
 - (i) |z|
 - (ii) $\arg z$
- (d) The locus of the complex number z is defined by the equation $\arg(z+1) = \frac{\pi}{4}$.
 - (i) Sketch the locus of z.
 - (ii) Find the least value of |z|.

(e)



The diagram above shows a square ABCD in the complex plane. The vertices A and B represent the complex numbers 9+i and 4+13i respectively. Find the complex numbers represented by:

- (i) the vector AB,
- (ii) the vertex D.

SGS Trial 2007 Form VI Mathematics Extension 2 Page 4

QUESTION THREE (15 marks) Use a separate writing booklet.

Marks

(a) (i) Use the formulae for cos(A+B) and cos(A-B) to prove that

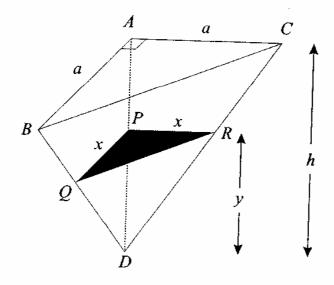
2

$$\cos P + \cos Q = 2\cos\frac{P+Q}{2}\cos\frac{P-Q}{2}.$$

- (ii) Hence, or otherwise, solve the equation $\cos 7x + \cos 3x = 0$, for $0 \le x \le \frac{\pi}{2}$.

3

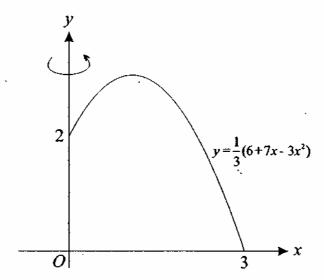
(b)



In the diagram above, ABCD is a triangular pyramid. Its base ABC is a right-angled isosceles triangle with equal sides AB and AC of length a units, and its perpendicular height AD is \bar{h} units. The typical triangular cross-section PQR shown is parallel to the base and y units above D. Let PQ = PR = x units.

(i) Find x in terms of a, h and y.

(ii) Use integration to find the volume of the pyramid.



The diagram above shows the region in the first quadrant bounded by the parabola $y = \frac{1}{3}(6 + 7x - 3x^2)$ and the x and y axes. This region is rotated through 360° about the y-axis to form a solid. Use the method of cylindrical shells to find the exact volume of the solid.

QUESTION FOUR (15 marks) Use a separate writing booklet.

Marks

(a) (i) Expand $(\sqrt{3} + 1)^2$.

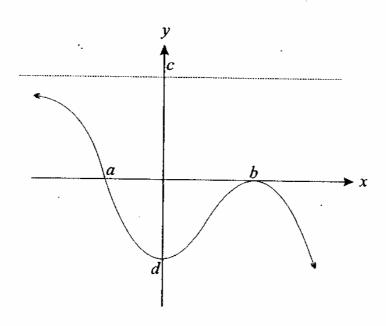
1

3

- (ii) The polynomial equation $x^4 + 4x^3 2x^2 12x 3 = 0$ has roots α , β , γ and δ . Find the polynomial equation whose roots are $\alpha + 1$, $\beta + 1$, $\gamma + 1$ and $\delta + 1$.
- (iii) Hence, or otherwise, solve the equation $x^4 + 4x^3 2x^2 12x 3 = 0$.

3

(b)



The diagram above shows the graph of the function y = f(x). Note that c > |d| > 1. On separate diagrams of roughly one-third of a page, sketch the graphs of:

(i)
$$y = \left(f(x)\right)^2$$

(ii)
$$y = \frac{1}{f(x)}$$

- (c) (i) Sketch the graphs of $y = x^3$ and $y = e^{-x}$ on a number plane. 1
 - (ii) Hence, on the same diagram as part (i), carefully sketch the graph of $y=x^3e^{-x}$ without any use of calculus.

SGS Trial 2007 Form VI Mathematics Extension 2 Page 7

QUESTION FIVE (15 marks) Use a separate writing booklet.

Marks

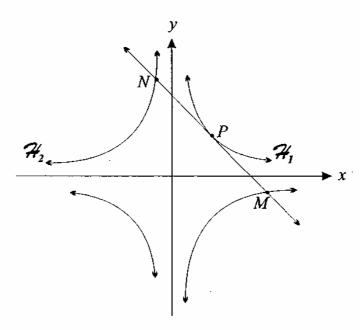
(a) The polynomial $P(x) = x^3 + ax + b$ has zeroes α , β and $2(\alpha - \beta)$.

(i) Show that
$$a = -13\alpha^2$$
.

(ii) Show that
$$b = 12\alpha^3$$
.

(iii) Deduce that the zeroes of
$$P(x)$$
 are $-\frac{13b}{12a}$, $-\frac{13b}{4a}$ and $\frac{13b}{3a}$.

(b)



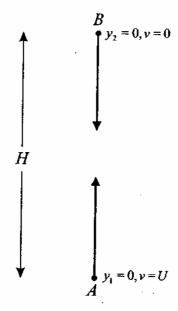
In the diagram above, \mathcal{H}_1 is the rectangular hyperbola $xy=c^2$, while \mathcal{H}_2 is the rectangular hyperbola $xy=-c^2$. The tangent to \mathcal{H}_1 at the variable point $P\left(ct,\frac{c}{t}\right)$ intersects \mathcal{H}_2 at M and N, as shown in the diagram. Let M and N be the points $\left(cp,-\frac{c}{p}\right)$ and $\left(cq,-\frac{c}{q}\right)$ respectively, and let T be the point of intersection of the tangents to \mathcal{H}_2 at M and N.

- (i) Show that the tangent to \mathcal{H}_1 at P has equation $x + t^2y = 2ct$.
- (ii) Use the fact that M and N lie on the tangent at P to show that $p^2 + 6pq + q^2 = 0$. 3
- (iii) Find the equations of the tangents to \mathcal{H}_2 at M and N, and hence show that T has coordinates $\left(\frac{2cpq}{p+q}, \frac{-2c}{p+q}\right)$.
- (iv) Deduce that T lies on \mathcal{H}_1 .

QUESTION SIX (15 marks) Use a separate writing booklet.

Marks

(a)



A particle P_1 of mass m is projected vertically upwards from a point A with initial velocity U. At the same instant, a second particle P_2 , also of mass m, is dropped from a point B directly above A. The distance H between A and B is equal to the maximum height that P_1 would reach were it not to collide with P_2 . As the particles P_1 and P_2 move, they each experience air resistance of magnitude mkv^2 , where k is a positive constant and v is velocity. At the instant the particles collide, P_2 has reached 50% of its terminal velocity V. Let y_1 be the distance of P_1 above A, and A0 distance of A2 below A3.

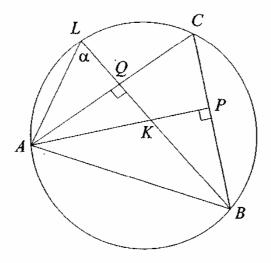
(i) Show that
$$V = \sqrt{\frac{g}{k}}$$
.

(ii) Show that
$$y_1 = \frac{1}{2k} \ln \left(\frac{g + kU^2}{g + kv^2} \right)$$
, where v is the velocity of P_1 .

(iii) Hence show that
$$H=\frac{1}{2k}\ln\left(1+\frac{U^2}{V^2}\right)$$
.

(iv) Assuming that
$$y_2 = \frac{1}{2k} \ln \left| \frac{g}{g - kv^2} \right|$$
, show that at the instant the particles collide, $y_2 = \frac{1}{2k} \ln \frac{4}{3}$.

(v) Deduce that the speed of
$$P_1$$
 at the instant the particles collide is $\frac{V}{\sqrt{3}}$.



The points A, B and C lie on a circle, as shown in the diagram above. The altitudes AP and BQ of $\triangle ABC$ intersect at K. The interval BQ produced meets the circle at L. Let $\angle ALQ = \alpha$.

Prove that AK = AL.

QUESTION SEVEN (15 marks) Use a separate writing booklet.

Marks

(a) Let $z = \cos \theta + i \sin \theta$.

(i) Show that
$$\cos \theta = \frac{1}{2} \left(z + \frac{1}{z} \right)$$
 and that $\sin \theta = \frac{1}{2i} \left(z - \frac{1}{z} \right)$.

 $\cos^3\theta\sin^4\theta = \frac{1}{64}\left(\cos 7\theta - \cos 5\theta - 3\cos 3\theta + 3\cos \theta\right).$

(b) (i) Use the substitution
$$u = \pi - x$$
 to show that, for any function $f(x)$,

$$\int_0^\pi x f(\sin x) dx = \frac{\pi}{2} \int_0^\pi f(\sin x) dx.$$

(ii) Hence show that

$$\int_0^{\pi} \frac{x \sin^3 x}{1 + \cos^2 x} \, dx = \frac{\pi}{2} (\pi - 2).$$

QUESTION EIGHT (15 marks) Use a separate writing booklet.

Marks

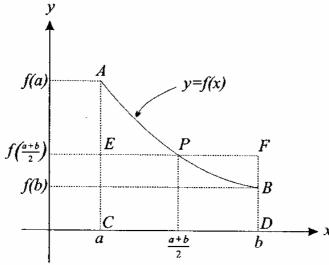
- (a) The complex numbers ω_1 and ω_2 have modulus 1, and arguments α_1 and α_2 respectively, where $0 < \alpha_1 < \alpha_2 < \frac{\pi}{2}$.
 - (i) Draw a diagram showing all the given information.

2

(ii) Show that $\arg(\omega_1 - \omega_2) = \frac{1}{2}(\alpha_1 + \alpha_2 - \pi)$.

3

(b)



The diagram above shows the curve y = f(x) for $a \le x \le b$. Note that f''(x) is positive for $a \le x \le b$.

(i) Copy the diagram, and then use areas to explain briefly why

3

$$(b-a) f\left(\frac{a+b}{2}\right) < \int_a^b f(x) dx < (b-a) \frac{f(a) + f(b)}{2}$$

(ii) Use the result in part (i) with $f(x) = \frac{1}{x^2}$, a = n - 1 and b = n, where n is an integer greater than 1, to show that

$$\frac{4}{(2n-1)^2} < \frac{1}{n-1} - \frac{1}{n} < \frac{1}{2} \left(\frac{1}{(n-1)^2} + \frac{1}{n^2} \right) \, .$$

(iii) Deduce that

2

$$4\left(\frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots\right) < 1 < \frac{1}{2} + \left(\frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots\right).$$

(iv) Show that

1

$$\frac{1}{2}\left(\frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots\right) < \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$$

(v) Hence show that $\frac{3}{2} < \sum_{n=1}^{\infty} \frac{1}{n^2} < \frac{7}{4}$.

2

END OF EXAMINATION