

Set:

Year 12 Mathematics - Extension 2 Trial Examination 2009

General Instructions

- * Reading time 5 minutes
- * Working time 3 hours
- * Write using black or blue pen
- * Board-approved calculators may be used
- * All necessary working should be shown in every question
- * A table of standard integrals is attached on the final page

Note: Any time you have remaining should be spent revising your answers.

Total marks - 120

- * Attempt Questions 1 8
- * All questions are of equal value
- * Start each question in a new writing booklet
- * Write your examination number on the front cover of each booklet to be handed in
- * If you do not attempt a question, submit a blank booklet with your examination number and "N/A" on the front cover

DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM

Total marks - 120

Attempt Questions 1 - 8

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (15 marks) Use a SEPARATE writing booklet

Marks

- (a) Find the indefinite integrals:
 - (i) $\int \sec^4 x \ dx$

2

(ii) $\int \sqrt{1-x^2} \ dx$

4

- (b) Consider the definite integral $I_n = \int_0^2 \frac{x^n}{x^3 + 1} dx$.
 - (i) Show that $I_2 = \frac{2}{3} \log_e 3$.

2

(ii) Using your knowledge of factorisation and <u>without</u> evaluating more than one integral, show that

$$I_2 - I_1 + I_0 = \log_e 3$$

2

(iii) Using a similar approach to that used in (ii), show that

$$I_1 + I_0 = \frac{\pi}{\sqrt{3}} \,.$$

3

(iv) Using the above results or otherwise find the exact value of I_0 .

(a) Make neat sketches of the following, showing all intercepts and asymptotes. There is no need to use calculus.

(i)
$$y = x^2(x-2)(x-3)$$

(ii)
$$y = \frac{1}{x^2(x-2)(x-3)}$$

(iii)
$$y = \frac{x^2}{(x-2)(x-3)}$$

(iv)
$$y = x\sqrt{(x-2)(x-3)}$$

(v)
$$y = x^2 |x-2|(x-3)$$

2

- (b) Consider the equation $e^{2x} = k\sqrt{x}$.
 - (i) Explain why this equation has no solutions when $k \le 0$.

1

(ii) Find the value of k for which the equation has exactly one real solution.

Question 3 (15 marks) Use a SEPARATE writing booklet

Marks

(a) Given z = 1 - 2i is a complex root of the quadratic equation $z^2 + (1+i)z + k = 0$, find the other root and the value of k.

3

(b) Find all complex numbers z = a + bi, where a and b are real such that $|z|^2 - iz = 16 - 2i$.

3

- (c) Consider all complex numbers z such that $\arg\left(\frac{z-1}{z-i}\right) = \frac{\pi}{4}$
 - (i) Make a neat sketch of the locus of z showing important features.

2

(ii) Determine the exact maximum value of |z|.

1

(iii) Determine (in radians correct to 3 significant figures) the maximum value of arg(z+1).

3

Question 3 continues on page 5

(d)

In the diagram, the points A, B, C and D represent the complex numbers z_1 , z_2 , z_3 and z_4 respectively. Both $\triangle ABC$ and $\triangle BCD$ are right angled isosceles triangles as shown.

(i) Show that the complex number z_3 can be written as

$$z_3 = (1-i)z_1 + iz_2$$
.

1

(ii) Hence express the complex number z_4 in terms of z_1 and z_2 , giving your answer in simplest form.

2

End of Question 3

Question 4 (15 marks) Use a SEPARATE writing booklet

Marks

2

- (a) Use Mathematical Induction to prove De Moivre's Theorem, ie $\left(\cos\theta + i\sin\theta\right)^n = \cos n\theta + i\sin n\theta \quad \text{for all positive integers } n.$
- (b) The equation $x^3 + 3px 1 = 0$, where p is real, has roots α , β and γ .
 - (i) Show that the monic cubic equation, with coefficients in terms of p, whose roots are α^2 , β^2 and γ^2 is $y^3 + 6py^2 + 9p^2y 1 = 0.$
 - (ii) Hence or otherwise obtain the monic cubic equation, with coefficients in terms of p, whose roots are $\frac{\beta \gamma}{\alpha}$, $\frac{\gamma \alpha}{\beta}$ and $\frac{\alpha \beta}{\gamma}$.
- (c) NOT TO SCALE D A E C

The figure shows a cyclic quadrilateral ABCD with diagonals AC and BD.

E is a point on AC such that $\angle ABE = \angle DBC$.

Make a neat copy of the diagram in your answer booklet.

(i) Prove that $\triangle ABE \parallel \triangle DBC$.

2

(ii) Prove that $\triangle ABD \parallel \triangle EBC$.

2

(iii) Hence prove Ptolemy's Theorem, which is:

$$AB.DC + AD.BC = AC.BD$$

- (a) Determine the eccentricity of the ellipse with equation $\frac{x^2}{16} + \frac{y^2}{25} = 1$ and then make a neat sketch of the curve, clearly showing the coordinates of the foci and the equations of the directrices.
- 4

- (b) A point $P(a \sec \theta, b \tan \theta)$ lies on the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$. The line through P perpendicular to the x-axis meets an asymptote at Q and the normal at P meets the x-axis at N.
 - (i) Make a neat sketch illustrating the information above.
 - (ii) Show that the equation of the normal at *P* is $\frac{ax}{\sec \theta} + \frac{by}{\tan \theta} = a^2 + b^2.$
 - (iii) Show that QN is perpendicular to the asymptote. 2
- (c) $P\left(p,\frac{1}{p}\right)$ and $Q\left(q,\frac{1}{q}\right)$ are two variable points on the rectangular hyperbola xy=1 such that the chord PQ passes through the point $A\left(0,2\right)$. M is the midpoint of PQ.
 - (i) Show that PQ has equation x + pqy (p+q) = 0 and hence deduce that p+q=2pq.
 - (ii) You may assume that the tangent to xy = 1 at the point (1,1) passes through A. Determine the locus of M, being sure to state any restrictions on the domain.

(a) The base of a solid is the region enclosed by the circle $x^2 + y^2 = 4$. Any cross sections of the solid formed by a plane perpendicular to the *x*-axis are equilateral triangles. Find the exact volume of the solid.

4

(b) (i) Make a neat sketch of the region enclosed between the curve $y = (x-3)^2$ and the line 3x + y - 9 = 0. Be sure to mark in the points of intersection.

2

(ii) The shaded region in (i) is rotated about the line x = 3. Use the method of cylindrical shells to find the exact volume of the solid generated.

3

Question 6 continues on page 9

(c) The diagram below shows part of the graphs of $y = \cos x$ and $y = \sin x$. The graph of $y = \cos x$ meets the y-axis at A, and C is the first point of intersection of the two graphs to the right of the y-axis. The region OAC is to be rotated about the line y = 1.

- (i) Write down the coordinates of the point C.
- 1
- (ii) The shaded strip of width δx shown in the diagram is rotated about the line y=1. Show that the volume δV of the resulting slice is given by

$$\delta V = \pi (2\cos x - 2\sin x - \cos 2x) \delta x.$$

(iii) Hence find the exact volume of the solid formed when the region OAC is rotated about the line y = 1.

End of Question 6

- (a) (i) Prove that $\tan^{-1}(n+1) \tan^{-1}(n) = \cot^{-1}(1+n+n^2)$
 - (ii) Hence find the sum of the finite series

$$\cot^{-1}(3) + \cot^{-1}(7) + \cot^{-1}(13) + \dots + \cot^{-1}(1+n+n^2)$$

Give your answer in simplest form.

2

(b) You are given that for the complex number $z = \cos \theta + i \sin \theta$ and for positive integers n, the following results are true:

$$z^n + \frac{1}{z^n} = 2\cos n\theta$$
 and $z^n - \frac{1}{z^n} = 2i\sin n\theta$

(i) Expand
$$\left(z + \frac{1}{z}\right)^4 + \left(z - \frac{1}{z}\right)^4$$
 and hence show that $4\cos^4\theta + 4\sin^4\theta = \cos 4\theta + 3$

3

2

(ii) By letting $x = \cos \theta$, show that the equation $8x^4 + 8(1 - x^2)^2 = 7 \text{ has roots } x = \pm \cos \frac{\pi}{12}, \pm \cos \frac{5\pi}{12}.$

(iii) Deduce that
$$\cos \frac{\pi}{12} \cos \frac{5\pi}{12} = \frac{1}{4}$$
 and $\cos \frac{\pi}{12} + \cos \frac{5\pi}{12} = \sqrt{\frac{3}{2}}$.

(iv) Hence or otherwise express $\cos \frac{\pi}{12}$ in surd form.

(a) Six letters are chosen from the word AUSTRALIA. These six letters are then placed alongside one another to form a six letter arrangement. Find the number of distinct six letter arrangements which are possible, considering all choices.

4

(b) It is given that for three positive real numbers a, b and c,

$$\frac{a+b+c}{3} \ge \sqrt[3]{abc}$$

If we also know that a+b+c=1, prove that

(i)
$$\frac{1}{abc} \ge 27$$

(ii)
$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge 9$$

(iii)
$$(1-a)(1-b)(1-c) \ge 8abc$$
 2

(c) Let
$$I_n = \int_0^{\frac{\pi}{2}} \sin^n x \ dx$$
.

(i) Show that
$$I_n = \left(\frac{n-1}{n}\right)I_{n-2}$$
 for $n \ge 2$.

(ii) Hence show that
$$\int_{0}^{\frac{\pi}{2}} \sin^{2n} x \, dx = \frac{\pi (2n)!}{2^{2n+1} (n!)^{2}}$$
 3

END OF EXAM

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0 \quad \text{if} \quad n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - a^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

$$= \ln(x + \sqrt{x^2 + a^2})$$

Note: $\ln x = \log_e x, x > 0$