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This question can be done in reverse order by use of properties of beta functions and
without any integration whatsoever.

iv. The beta function B(z1, z2) :=
∫ 1

0
tz1−1(1−t)z2−1dt where ℜ(z1) > 0 and ℜ(z2) > 0.

Then where Γ is the gamma function we have B(z1, z2) =
Γ(z1)Γ(z2)
Γ(z1+z2)

and also for non-

negative integers x, Γ(x+ 1) = x! whereupon B(n+ 1, n+ 1) = (n!)2

(2n+1)!

The statement in the question is equivalent to proving B(n+ 1, n+ 1) ≤ 4−n

B(1, 1) = (0!)2

(2×0+1)!
= 1 ≤ 4−0 ∴ it is true for n = 0

If it is true for n = k then B(k + 1, k + 1) ≤ 4−k

∴ B(k + 2, k + 2) = ((k+1)!)2

(2k+3)!

= (k+1)2

(2k+3)(2k+2)
· (k!)2

(2k+1)!

≤ (k+1)2

(2k+2)(2k+2)
·B(k + 1, k + 1)

≤ 1
2
· 1
2
· 4−k

= 4−(k+1) and then it is true for n = k + 1

So by the principle of mathematical induction, B(n+1, n+1) ≤ 4−n for all non-negative
integers n and so (2nn!)2 ≤ (2n+ 1)!

iii. Jn = B(n+ 1, n+ 1) = (n!)2

(2n+1)!

ii. We also have B(z1, z2) = 2
∫ π

2

0
sin2z1−1 θ cos2z2−1 θ dθ whereupon

In =
∫ π

2

0
22n+1 sin2n+1 θ cos2n+1 θ dθ = 22nB(n+ 1, n+ 1) = 22n(n!)2

(2n+1)!
.

i. In = 22n(n!)2

(2n+1)!

= 22n(n(n−1)!)2

(2n+1)(2n)(2n−1)!

= 2n
2n+1

· 22n−2((n−1)!)2

(2n−1)!

= 2n
2n+1

In−1 for n ≥ 1


