2020 Mathematics Extension 2 HSC Q16b Alternative Solution

by Derek Buchanan

This question can be done in reverse order by use of properties of beta functions and without any integration whatsoever.
iv. The beta function $B\left(z_{1}, z_{2}\right):=\int_{0}^{1} t^{z_{1}-1}(1-t)^{z_{2}-1} d t$ where $\Re\left(z_{1}\right)>0$ and $\Re\left(z_{2}\right)>0$. Then where Γ is the gamma function we have $B\left(z_{1}, z_{2}\right)=\frac{\Gamma\left(z_{1}\right) \Gamma\left(z_{2}\right)}{\Gamma\left(z_{1}+z_{2}\right)}$ and also for nonnegative integers $x, \Gamma(x+1)=x$! whereupon $B(n+1, n+1)=\frac{(n!)^{2}}{(2 n+1)!}$

The statement in the question is equivalent to proving $B(n+1, n+1) \leq 4^{-n}$ $B(1,1)=\frac{(0!)^{2}}{(2 \times 0+1)!}=1 \leq 4^{-0} \therefore$ it is true for $n=0$

If it is true for $n=k$ then $B(k+1, k+1) \leq 4^{-k}$

$$
\begin{aligned}
\therefore B(k+2, k+2) & =\frac{((k+1)!)^{2}}{(2 k+3)!} \\
& =\frac{(k+1)^{2}}{(2 k+3)(2 k+2)} \cdot \frac{(k!)^{2}}{(2 k+1)!} \\
& \leq \frac{(k+1)^{2}}{(2 k+2)(2 k+2)} \cdot B(k+1, k+1) \\
& \leq \frac{1}{2} \cdot \frac{1}{2} \cdot 4^{-k} \\
& =4^{-(k+1)} \text { and then it is true for } n=k+1
\end{aligned}
$$

So by the principle of mathematical induction, $B(n+1, n+1) \leq 4^{-n}$ for all non-negative integers n and so $\left(2^{n} n!\right)^{2} \leq(2 n+1)$!
iii. $J_{n}=B(n+1, n+1)=\frac{(n!)^{2}}{(2 n+1)!}$
ii. We also have $B\left(z_{1}, z_{2}\right)=2 \int_{0}^{\frac{\pi}{2}} \sin ^{2 z_{1}-1} \theta \cos ^{2 z_{2}-1} \theta d \theta$ whereupon $I_{n}=\int_{0}^{\frac{\pi}{2}} 2^{2 n+1} \sin ^{2 n+1} \theta \cos ^{2 n+1} \theta d \theta=2^{2 n} B(n+1, n+1)=\frac{2^{2 n}(n!)^{2}}{(2 n+1)!}$.
i. $I_{n}=\frac{2^{2 n}(n!)^{2}}{(2 n+1)!}$

$$
\begin{aligned}
& =\frac{2^{2 n}(n(n-1)!)^{2}}{(2 n+1)(2 n)(2 n-1)!} \\
& =\frac{2 n}{2 n+1} \cdot \frac{2^{2 n-2}((n-1)!)^{2}}{(2 n-1)!}
\end{aligned}
$$

$$
=\frac{2 n}{2 n+1} I_{n-1} \text { for } n \geq 1
$$

