

Blacktown Boys' High School

2023

HSC Trial Examination

Mathematics Extension 2

General

Instructions

- Reading time 10 minutes • Working time – 3 hours
- Write using black pen
- Calculators approved by NESA may be used
- A reference sheet is provided for this paper
- All diagrams are not drawn to scale
- In Questions 11 16, show relevant mathematical reasoning and/or calculations

Total marks: Section I – 10 marks (pages 3 – 6)

100

- Attempt Questions 1 10
- Allow about 15 minutes for this section
- Section II 90 marks (pages 7 12)
 - Attempt Questions 11 16
 - Allow about 2 hours and 45 minutes for this section

Assessor: X. Chirgwin

Student Name:

Teacher Name:

Students are advised that this is a trial examination only and cannot in any way guarantee the content or format of the 2023 Higher School Certificate Examination.

- Blank Page -

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1-10.

- Q1 Let a = 3i 5j k and b = i 4k. Which of the following is equal to b 2a?
 - A. i 5j + 7k
 - B. $-5\underset{\sim}{i} + 5j 3\underset{\sim}{k}$
 - C. -5i + 10j 2k
 - D. -5i + 6j + 2k
- Q2 If $z = 2e^{-\frac{i\pi}{3}}$, then z^4 is equal to
 - A. $-16\left(\cos\left(-\frac{4\pi}{3}\right) + i\sin\left(-\frac{4\pi}{3}\right)\right)$
B. $-16\left(\cos\left(-\frac{\pi}{12}\right) + i\sin\left(-\frac{\pi}{12}\right)\right)$
C. $16\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right)$
D. $16\left(\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)\right)$
- Q3 The negation of the statement "I listen to music and I play games." is:
 - A. I don't listen to music or I don't play games.
 - B. I don't listen to music and I don't play games.
 - C. I don't listen to music or I play games.
 - D. I don't listen to music and I play games.
 - -3-

BBHS 2023 HSC Mathematics Extension 2 Trial Examination

Q4 The polynomial equation P(z) = 0 has real coefficients. Three of the roots of this equation are z = -3 + 2i, z = i and z = 0.

The minimum degree of P(z) is

А.	3
В.	4
C.	5
D.	6

- Q5 A particle is moving in simple harmonic motion and its displacement, x units, at time t seconds is given by the equation $x = A\cos(nt) + 3$. The period of the motion is 6π seconds and the particle is initially at rest, 13 units to the right of the origin. Find the values of A and n.
 - A. $A = 10, n = \frac{1}{3}$
 - B. A = 10, n = 3
 - C. $A = 13, n = \frac{1}{3}$
 - D. A = 13, n = 3
- Q6 Find $\int \frac{5x+1}{x^2+25} dx$ A. $\frac{5}{2} \log_e(x^2+25) + \tan^{-1}\left(\frac{x}{5}\right) + C$ B. $\frac{5}{2} \log_e(x^2+25) + \frac{1}{5} \tan^{-1}\left(\frac{x}{5}\right) + C$ C. $5 \log_e(x^2+25) + \tan^{-1}\left(\frac{x}{5}\right) + C$ D. $5 \log_e(x^2+25) + \frac{1}{5} \tan^{-1}\left(\frac{x}{5}\right) + C$

- Q7 The complex numbers z, iz and z + iz, where z is a complex number, are plotted in the Argand plane, forming the vertices of a triangle. The area of this triangle is
 - A. $|z| + |z|^2$
 - B. $|z|^2$
 - C. $\frac{\sqrt{2}|z|^2}{2}$
 - D. $\frac{|z|^2}{2}$
- Q8 Let a = 2i + 3j + 6k and b = i 4j + 8k, where the acute angle between the vectors is θ .

The value of $sin(2\theta)$ is

- A. $\frac{175\sqrt{101}}{63^2}$
- B. $\frac{380\sqrt{101}}{63^2}$
- C. $\frac{380\sqrt{101}}{63}$

D.
$$\frac{320\sqrt{5}}{63}$$

Q9 Given that $x, y \in \mathbb{Z}$, where $x, y \ge 0$, which of the following is a FALSE statement?

- A. $\exists x (\forall y : y = 1 3x)$
- B. $\exists x (\exists y : y = 5 + 2x)$
- C. $\forall x (\exists y : y = x^2)$
- D. $\forall x (\exists y : y x = 0)$

BBHS 2023 HSC Mathematics Extension 2 Trial Examination

Q10 All of the integrals below are of the form $\int_{-1}^{1} f(x) dx$. Which of the integrals can be written as $2 \int_{0}^{1} f(x) dx$? A. $\int_{-1}^{1} e^{2x} \tan^{-1}\left(\frac{x}{2}\right) dx$ B. $\int_{-1}^{1} \sqrt{2 \tan^{2} x + x^{3}} dx$ C. $\int_{-1}^{1} \frac{x^{3} \sin^{2} x}{x^{2} + 2} dx$ D. $\int_{-1}^{1} x^{3} \sin^{-1}\left(\frac{x}{2}\right) dx$

End of Section I

Section II

90 Marks Attempt Questions 11–16 Allow about 2 hours and 45 minutes for this section

Answer each question on a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

- (a) Given the two complex numbers $z = \sqrt{6} \sqrt{2}i$ and $w = 2e^{\frac{i\pi}{4}}$,
 - (i)Express z in the form $re^{i\theta}$.1(ii)Find wz^6 in x + iy form.2

(b) Evaluate

i)
$$\int_0^1 \frac{x^2}{x+2} dx$$
 2

(ii)
$$\int_0^3 \sqrt{\frac{6-x}{6+x}} dx$$
 3

(c) Prove the following statement by contradiction:

"If *n* is odd, then $5n^2 - 8n$ is odd."

- (d) Given that a = -3i + 2j + 17k and b = -mi + 6j + 14k, where *m* is a positive real constant, the vector a b is perpendicular to vector *b*.
 - (i) Find the value of *m*. 3 (ii) Find the vector projection of the vector a - b onto vector *c*, where c = 2i - 5j - 4k.
 - End of Questions 11

BBHS 2023 HSC Mathematics Extension 2 Trial Examination

(c)

2

Question 12 (15 marks) Use a SEPARATE writing booklet.

- (a) A line in the complex plane is given by $|z 3| = |z + 1 4i|, z \in \mathbb{C}$.
 - (i) Find the Cartesian equation of the line. 2
 - (ii) Find the points of intersection of the line with the circle |z 3| = 4. 2
 - (iii) Sketch both the line and the circle on the Argand diagram, showing clearly all key features and the points of intersection.
 - (iv) The line cuts the circle into two segments. Find the exact area of the 1 minor segment.

(b) (i) Express
$$\frac{11x+10}{(x^2+4)(x-2)}$$
 as a sum of partial fractions over \mathbb{R} . 2

(ii) Hence evaluate
$$\int_{3}^{4} \frac{11x+10}{(x^2+4)(x-2)} dx.$$
 2

Find
(i)
$$\int \frac{2}{\sqrt{8x - 12 - x^2}} dx$$
 2

(ii)
$$\int \sqrt{2x} \ln x \, dx$$
 2

End of Questions 12

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a)	Consid	ler the polynomial $P(x) = x^4 - 8x^3 + 42x^2 - 104x + 1769$.	
	(i)	If $P(x)$ has roots $a + bi$, $-3a + bi$ (where a, b are real), find the values of a and b .	2
	(ii)	Hence express $P(x)$ as the product of two real quadratic factors.	2
(b)	Relativ	We to a fixed origin 0, the points A, B and C have respective position i = 10k, 4i + 3j + 7k and $8i + 7j + 3k$.	
	(i)	Show that A, B and C are collinear, and find the ratio $AB:BC$.	2
	(ii)	Find a vector equation for the straight line l that passes through A, B and C .	1
	(iii)	Show that OB is perpendicular to l .	1
	(iv)	Calculate the area of the triangle OAC.	2
(c)	A parti metres	icle moves in a straight line and at time t seconds, its velocity, v per second, is related to its displacement, x metres, by	
		$v^2 = 189 - 42x - 7x^2$	
	(i)	Show that the motion is simple harmonic in the form of $\ddot{x} = -n^2(x - c)$	1
	(ii)	Find the period of the motion.	1

Find the amplitude of the motion. (iii) What is the maximum speed of this particle and what is the value of (iv) 1 *x* when the particle is at the maximum speed?

2

BBHS 2023 HSC Mathematics Extension 2 Trial Examination

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) (i) Use the substitution
$$u = \frac{\pi}{2} - x$$
 to show that

$$\int_{0}^{\frac{\pi}{2}} \frac{e^{\sin x}}{e^{\sin x} + e^{\cos x}} dx = \int_{0}^{\frac{\pi}{2}} \frac{e^{\cos x}}{e^{\sin x} + e^{\cos x}} dx$$
(ii) Hence evaluate $\int_{0}^{\frac{\pi}{2}} \frac{e^{\sin x}}{e^{\sin x} + e^{\cos x}} dx$ 1

(b) Prove that for any integer
$$n > 1$$
, $\log_n(n-1)$ is irrational. 2

Given that $z = e^{i\theta}$ (c)

(i) Show that
$$z^n + \frac{1}{z^n} = 2\cos(n\theta)$$
 1

Hence solve the follow equation and leave answers in x + iy form (ii) 4 where x and y are real.

$$5z^4 - 11z^3 + 16z^2 - 11z + 5 = 0$$

(d) Let
$$I_n = \int \frac{dx}{(x^2 + 1)^n}$$
 where $n \ge 1$, is an integer.
(i) Show that, for $n \ge 2$, $I_n = \frac{1}{2(n-1)} \left[\frac{x}{(x^2 + 1)^{n-1}} + (2n-3)I_{n-1} \right]$ 3

(ii) Hence evaluate
$$\int_0^1 \frac{dx}{(x^2+1)^2}$$
 2

End of Questions 14

End of Questions 13

Question 15 (15 marks) Use a SEPARATE writing booklet.

(a) Use the substitution
$$t = \tan \frac{x}{2}$$
 to evaluate $\int_0^{\frac{\pi}{2}} \frac{2}{4 + 5\cos x} dx$

4

2

3

1

2

- (b) The velocity of a particle at position $x \ge 0$ is given by $v = 4e^{-2x} 3$, and initially the particle is at x = 0.
 - (i) Find the initial acceleration of this particle.(ii) Find the displacement of the particle x in terms of time t.
 - (iii) Find the velocity of the particle v in terms of time t.
- (c) If *a*, *b*, *c* and *d* are positive real numbers, prove that:

(i)
$$\frac{a+b}{2} \ge \sqrt{ab}$$
 1

(ii) $(a+b+c+d)^2 \ge 4(ac+bc+bd+ad)$ 2

(iii)
$$(a+b+c+d)^2 \ge \frac{8}{3}(ab+ad+bc+cd+bd+ac)$$

BBHS 2023 HSC Mathematics Extension 2 Trial Examination

Question 16 (15 marks) Use a SEPARATE writing booklet.

(a)	(i)	By considering the interval $0 < x < 1$, show that	2
		$\frac{1}{2}x(1-x)^3 < \frac{x(1-x)^3}{1+x} < x(1-x)^3$	
	(ii)	Deduce that	1
		$\frac{1}{2} \int_0^1 x(1-x)^3 dx < \int_0^1 \frac{x(1-x)^3}{1+x} dx < \int_0^1 x(1-x)^3 dx$	
	(iii)	Given that $\int_{-1}^{1} \frac{x(1-x)^3}{1+x} dx = \frac{67}{12} - 8 \ln 2$, deduce that	3
		$\frac{83}{120} < \ln 2 < \frac{667}{960}$	
(b)	A seq	uence $\{b_n\}$ is defined by $b_1 = 1$ and $b_{n+1} = b_n(b_n + 1)$, for all $n \ge 1$.	
	(i)	Evaluate b_2, b_3, b_4 .	1
	(ii)	Use mathematical induction to prove that for each n ,	3
		$b_{n+1} = 1 + \sum_{r=1}^{n} (b_r)^2$	
	(iii)	Evaluate b_5 and express it as the sum of 5 positive squares.	1
	(iv)	Show that $(2b_{n+1} + 1)^2 = (2b_n + 1)^2 + (2b_{n+1})^2$	1
	(v)	Hence deduce that $(2b_{n+1}+1)^2 = (2b_1+1)^2 + \sum_{r=2}^{n+1} (2b_r)^2$	2
	(vi)	Hence prove that $3^2 + 4^2 + 12^2 + 84^2 + 3612^2 = 3613^2$	1

End of Questions 15

End of Paper

Student Name:

Multiple Choice Answer Sheet

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample:	2 + 4 =	(A) 2	(B) 6	(C) 8	(D) 9
		$A \bigcirc$	В 🔴	СО	D 🔿

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word 'correct' and drawing an arrow as follows.

	2023 Mathematics Extension 2 AT4 Trial Solution	ons
Section 1		
Q1	$ \begin{array}{c} \mathbf{c} \\ \underbrace{b-2a} \\ = \underbrace{i-4k-2\left(3\underbrace{i-5j-k} \\ -5\underbrace{i+10j-2k} \right) \\ = -5\underbrace{i+10j-2k} \end{array} $	1 Mark
Q2	$ \begin{array}{l} \mathbf{D} \\ z^4 = \left(2e^{-\frac{i\pi}{3}}\right)^4 = 2^4 e^{-\frac{i4\pi}{3}} \\ z^4 = 16\left(\cos\left(-\frac{4\pi}{3}\right) + i\sin\left(-\frac{4\pi}{3}\right)\right) = 16\left(\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)\right) \end{array} $	1 Mark
Q3	A The negation of " p and q " is "not p or not q " The negation statement is "I don't listen to music or I don't play games."	1 Mark
Q4	C Real polynomial, complex roots appear in conjugate pairs, so the minimum degree of $P(z)$ is 5.	1 Mark
Q5	A $T = \frac{2\pi}{n} = 6\pi$ $n = \frac{1}{3}$ $t = 0, x = 13$ $13 = A + 3$ $A = 10$	1 Mark
Q6	$ \begin{array}{l} \mathbf{B} \\ \int \frac{5x+1}{x^2+25} dx \\ = \frac{5}{2} \int \frac{2xdx}{x^2+25} + \int \frac{1}{x^2+25} dx \\ = \frac{5}{2} \log_e(x^2+25) + \frac{1}{5} \tan^{-1}\left(\frac{x}{5}\right) + C \end{array} $	1 Mark
Q7	D z, iz and z + iz form a right-angled triangle. Area of this triangle is $\frac{1}{2} \times z \times iz = \frac{ z ^2}{2}$	1 Mark
Q8	$ \begin{array}{l} B \\ \cos\theta = \frac{a \cdot b}{\left \frac{a}{2}\right \left \frac{b}{2}\right } = \frac{2 \times 1 + 3 \times -4 + 6 \times 8}{\sqrt{2^2 + 3^2 + 6^2} \times \sqrt{1^2 + 4^2 + 8^2}} \\ \cos\theta = \frac{38}{63} \\ \sin\theta = \frac{5\sqrt{101}}{63} \\ \sin(2\theta) = 2\sin\theta\cos\theta = 2 \times \frac{38}{63} \times \frac{5\sqrt{101}}{63} = \frac{380\sqrt{101}}{63^2} \end{array} $	1 Mark

Q9	Α	1 Mark
	Counter example $y = 2$	
	2 = 1 - 3x	
	1 = -3x	
	$r = -\frac{1}{2}$	
	x - 3	
	Which is false.	
Q10	D	1 Mark
	If $f(x)$ is even,	
	$\int_{-1}^{1} f(x) dx = 2 \int_{0}^{1} f(x) dx$	
	$f(x) = x^3 \sin^{-1}\left(\frac{x}{2}\right)$	
	$f(-x) = (-x)^3 \sin^{-1}\left(\frac{-x}{2}\right)$	
	$f(-x) = -x^3 \times -\sin^{-1}\left(\frac{x}{2}\right)$	
	$f(-x) = x^3 \sin^{-1}\left(\frac{x}{2}\right) = f(x)$	

Section 2		
Q11ai	$z = \sqrt{6} - \sqrt{2}i$ $z = 2\sqrt{2}e^{-\frac{i\pi}{6}}$	1 Mark Correct solution
Q11aii	wz^{6} $= 2e^{\frac{i\pi}{4}} \times \left(2\sqrt{2}e^{-\frac{i\pi}{6}}\right)^{6}$ $= 2e^{\frac{i\pi}{4}} \times 512e^{-i\pi}$ $= 1024e^{-\frac{3i\pi}{4}}$ $= 1024\left(\cos\left(-\frac{3i\pi}{4}\right) + i\sin\left(-\frac{3i\pi}{4}\right)\right)$ $= 1024\left(-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\right)$ $= -512\sqrt{2} - 512\sqrt{2}i$	2 Marks Correct solution 1 Mark Finds $z^6 = 64e^{-i\pi}$
Q11bi	$\int_{0}^{1} \frac{x^{2}}{x+2} dx$ $= \int_{0}^{1} \frac{x^{2}-4+4}{x+2} dx$ $= \int_{0}^{1} \left(x-2 + \frac{4}{x+2}\right) dx$ $= \left[\frac{x^{2}}{2} - 2x + 4\ln x+2 \right]_{0}^{1}$ $= \left(\frac{1^{2}}{2} - 2 \times 1 + 4\ln 1+2 \right) - (0 + 4\ln 0+2)$ $= -\frac{3}{2} + 4\ln\frac{3}{2}$	2 Marks Correct solution 1 Mark Correct primitive function
Q11bii	$\int_{0}^{3} \sqrt{\frac{6-x}{6+x}} dx$ $= \int_{0}^{3} \sqrt{\frac{6-x}{6+x}} dx$ $= \int_{0}^{3} \sqrt{\frac{6-x}{6+x}} \sqrt{\frac{6-x}{6-x}} dx$ $= \int_{0}^{3} \frac{6-x}{\sqrt{36-x^{2}}} dx$ $= \int_{0}^{3} \left(\frac{6}{\sqrt{36-x^{2}}} - \frac{x}{\sqrt{36-x^{2}}} \right) dx$ $= \left[6 \sin^{-1}\frac{x}{6} + \sqrt{36-x^{2}} \right]_{0}^{3}$ $= \left(6 \sin^{-1}\frac{3}{6} + \sqrt{36-3^{2}} \right) - \left(6 \sin^{-1}0 + \sqrt{36-0^{2}} \right)$ $= \left(6 \times \frac{\pi}{6} + \sqrt{27} \right) - (0+6)$ $= \pi + 3\sqrt{3} - 6$	3 Marks Correct solution 2 Marks Correct primitive function 1 Mark Correct integration for either $\frac{6}{\sqrt{36-x^2}}$ or $\frac{x}{\sqrt{36-x^2}}$
Q11c	Prove by contradiction: "If <i>n</i> is odd, then $5n^2 - 8n$ is even." Then $n = 2k + 1$ for some integer <i>k</i> . $5(2k + 1)^2 - 8(2k + 1)$ $= 5(4k^2 + 4k + 1) - 16k - 8$ $= 20k^2 + 20k + 5 - 16k - 8$ $= 20k^2 + 4k - 4 + 1$ $= 2(10k^2 + 2k - 2) + 1$ $= 2p + 1$, where $p = 10k^2 + 2k - 2$ Which is odd, therefore proved by contradiction.	2 Marks Correct solution 1 Mark Makes significant progress

Q11di	a - h = (-3i + 2i + 17k) - (-mi + 6i + 14k)	3 Marks
	$\begin{pmatrix} a & b \\ a & c \\ a $	Correct solution
	a - b = (m - 3)l - 4j + 3k	
		2 Marks
	$(a-b) \cdot b = 0$	Obtains $m^2 + 2m = 0$
	$(m-3) \times -m + (-4) \times 6 + 3 \times 14 = 0$	-m + 2m = 0
	$-m^2 + 3m + 18 = 0$	1 Mark
	$m^2 - 3m - 18 = 0$	Finds $a - b$
	(m-6)(m+3) = 0	~ ~
	m = -3, m = 6	
	Since m is positive, then $m = 6$.	
Q11dii	a - b = 3i - 4j + 3k	2 Marks
	~	Correct solution
	$3 \times 2 + (-4) \times (-5) + 3 \times (-4)$ 1 (21 51 41)	
	$\sqrt{2^2 + 5^2 + 4^2}$ $\times \frac{\sqrt{2^2 + 5^2 + 4^2}}{\sqrt{2^2 + 5^2 + 4^2}} \begin{pmatrix} 2i - 5j - 4k \\ 2 & -2 \end{pmatrix}$	1 Mark
	14(2 - 2) 28 14 56	Substitute into
	$=\frac{1}{45}\left(2\frac{1}{2}-5\frac{1}{2}-4\frac{1}{2}\right)=\frac{1}{45}\left(2\frac{1}{2}-\frac{1}{2}-\frac{1}{2}\right)=\frac{1}{45}\left(2\frac{1}{2}-\frac{1}{2}\right)$	vector projection
		Tormula
0125	z - 3 - z + 1 - 4i	2 Marks
QIZai	$\frac{ z-3 ^2 + z-4 }{ x-3 ^2 + x-4 ^2}$	2 Widiks
	$x^{2} - 6x + 9 + y^{2} = x^{2} + 2x + 1 + y^{2} - 8y + 16$	Confect solution
	-8x + 8y - 8 = 0	1 Mark
	x - y + 1 = 0 or $y = x + 1$	Makes significant
		progress
Q12aii	z-3 = 4	2 Marks
-	$(x-3)^2 + y^2 = 4^2 \dots (1)$	Correct solution
	$y = x + 1 \dots (2)$	1 Mark
	Sub (2) into (1)	Correct Cartesian
	$(x-3)^2 + (x+1)^2 = 4^2$	equation of circle
	$x^2 - 6x + 9 + x^2 + 2x + 1 = 16$	and substitutes
	$2x^2 - 4x - 6 = 0$	y = x + 1 into it
	$x^2 - 2x - 3 = 0$	
	(x+1)(x-3) = 0	
	x = -1, x = 3	
	x = -1 $y = 0$	
	x = -1, y = 0 x = 3, y = 4	
	Points of intersections are $(-1, 0)$, $(3, 4)$.	
Q12aiii	1m(z)	2 Marks
	5	Correct solution
		1 Mark
	3	Correct graph for
		the line or the
		circle with all key
	Re(7)	features shown
	-3	
	-4	
	1	

Q12aiv	Area of minor segment is the area of a quarter of a circle take away the area of the triangle.	1 Mark Correct solution
	$\frac{1}{4}\pi \times 4^2 - \frac{1}{2} \times 4^2 = (4\pi - 8) \text{ units}^2$	
Q12bi	$\frac{11x+10}{(x^2+4)(x-2)} = \frac{Ax+B}{x^2+4} + \frac{C}{x-2}$	2 Marks Correct solution
	(Ax + B)(x - 2) + C(x2 + 4) = 11x + 10	1 Mark Finds correct value
	121 x = 2, 8C = 22 + 10 C = 4	of A of B of C
	Let x = 0 -2B + 4C = 10	
	$\begin{array}{l} -2B = -6\\ B = 3 \end{array}$	
	Let $x = 1$ $(A + B) \times (-1) + 5C = 11 + 10$	
	-(A+3)+20 = 21 A = -4	
	$\frac{11x+10}{(x^2+4)(x-2)} = \frac{-4x+3}{x^2+4} + \frac{4}{x-2}$	
Q12bii	$\int_{3}^{4} \frac{11x+10}{(x^{2}+4)(x-2)} dx$	2 Marks Correct solution
	$= \int_{3}^{4} \left(\frac{-4x+3}{x^2+4} + \frac{4}{x-2} \right) dx$ = $2 \int_{3}^{4} \frac{2x}{x^2+4} dx + 2 \int_{3}^{4} \frac{1}{x^2+4} dx + 4 \int_{3}^{4} \frac{1}{x^2+4} dx$	1 Mark Correct primitive
	$= -2 \int_{3}^{2} \frac{x^{2} + 4}{x^{2} + 4} \frac{ax}{x^{2} + 4} \frac{ax}{x^{2} + 4} \frac{ax}{x^{2} + 4} + 4 \int_{3}^{2} \frac{x - 2}{x - 2} \frac{ax}{x^{2} + 4} $ $= \left[-2 \ln x^{2} + 4 + \frac{3}{\tan^{-1} - \frac{x}{4}} + 4 \ln x - 2 \right]^{4}$	Tunction
	$= \left(-2\ln 4^{2} + 4 + \frac{3}{2}\tan^{-1}\frac{4}{2} + 4\ln 4 - 2 \right)$	
	$-\left(-2\ln 3^2+4 +\frac{3}{2}\tan^{-1}\frac{3}{2}+4\ln 3-2 \right)$	
	$= \left(-2\ln 20 + \frac{3}{2}\tan^{-1}2 + 4\ln 2\right) - \left(-2\ln 13 + \frac{3}{2}\tan^{-1}\frac{3}{2}\right)$ $= 2\ln\left(\frac{13 \times 4}{2}\right) + \frac{3}{2}\left(\tan^{-1}2 - \tan^{-1}\frac{3}{2}\right)$	
	$= 2\ln\left(\frac{13}{5}\right) + \frac{3}{2}\left(\tan^{-1}2 - \tan^{-1}\frac{3}{2}\right)$	
Q12ci	$\int \frac{2}{\sqrt{8x-12-x^2}} dx$	2 Marks Correct solution
	$= \int \frac{1}{\sqrt{4 - (x^2 - 8x + 16)}} dx$ - $\int \frac{2}{\sqrt{4 - (x^2 - 8x + 16)}} dx$	1 Mark Complete the
	$\int \sqrt{4 - (x - 4)^2} dx$ $= \int \frac{2}{\sqrt{1 - (x - 4)^2}} dx$	$\frac{2}{\sqrt{4 - (x - 4)^2}}$
	$= 2\sqrt{1 - \frac{(x-4)}{4}} = 2\sin^{-1}\left(\frac{x-4}{2}\right) + C$	

Q12cii	$I = \int \sqrt{2x} \ln x dx$	2 Marks
	_ 1	Correct solution
	$u = \ln x \qquad v' = \sqrt{2x^2}$	1 Mark
	$u' = \frac{1}{2}$ $v = \frac{2\sqrt{2x^2}}{2}$	Correctly applies
	x 3	integration by parts
	$I = \frac{2\sqrt{2}x^{\frac{3}{2}}\ln x}{3} - \int \frac{1}{x} \times \frac{2\sqrt{2}x^{\frac{3}{2}}}{3}dx$	
	$I = \frac{2\sqrt{2}x^{\frac{3}{2}}\ln x}{3} - \frac{2\sqrt{2}}{3}\int x^{\frac{1}{2}}dx$	
	$I = \frac{2\sqrt{2}x^{\frac{3}{2}}\ln x}{\frac{3}{3}} - \frac{2\sqrt{2}}{3} \times \frac{2x^{\frac{3}{2}}}{3} + C$	
	$I = \frac{2\sqrt{2}x^{\overline{2}}}{3} \left(\ln x - \frac{2}{3}\right) + C$	
Q13ai	Since $P(x)$ is real, if $a + bi$, $-3a + bi$ is a root, then $a - bi$, $-3a - bi$ are also roots of $P(x)$.	2 Marks Correct solution
	Sum of roots	1 Mark
	(a+bi) + (a-bi) + (-3a+bi) + (-3a+bi) = 8	Finds a
	a = -2	
	Denduct of reacts	
	Product of roots (a + bi)(a - bi)(-3a + bi)(-3a + bi) = 1769	
	$(a^2 + b^2)(9a^2 + b^2) = 1769$	
	$(4+b^2)(36+b^2) = 1769$	
	$b^{4} + 40b^{2} - 1625 = 0$	
	$(b^2 + 65)(b^2 - 25) = 0$	
	$b^2 = 25, b^2 \neq 65$ since b is real.	
	$b = \pm 5$	
Q13aii	P(x) = (x + 2 + 5i)(x + 2 - 5i)(x - 6 + 5i)(x - 6 - 5i)	2 Marks
	$F_{02}(x \pm 2 \pm 5i)(x \pm 2 - 5i)$	Correct solution
	Sum of roots $(-2 + 5i)(x + 2 - 5i) = -4$	1 Mark
	Product of roots $(-2 + 5i)(-2 - 5i) = 4 + 25 = 29$	Obtains one real
	$(x+2+5i)(x+2-5i) = x^2 + 4x + 29$	quadratic factor
	For $(x - 6 + 5i)(x - 6 - 5i)$	
	Sum of roots $(6+5i) + (6-5i) = 12$	
	Product of roots $(6+5i)(6-5i) = 36+25 = 61$	
	$(x - 0 + 3i)(x - 0 - 3i) = x^{-} - 12x + 61$	
	$\therefore P(x) = (x^2 + 4x + 29)(x^2 - 12x + 61)$	
Q13bi	$\begin{vmatrix} \overrightarrow{AB} = \left(4i + 3j + 7k\right) - \left(i + 10k\right) = 3i + 3j - 3k = 3\left(i + j - k\right) \\ \overrightarrow{AB} = \left(2i + 3j + 7k\right) - \left(i + 10k\right) = 3i + 3j - 3k = 3\left(i + j - k\right) \\ \overrightarrow{AB} = \left(2i + 3j + 7k\right) - \left(i + 10k\right) = 3i + 3j - 3k = 3\left(i + j - k\right) \\ \overrightarrow{AB} = \left(2i + 3j + 7k\right) - \left(i + 10k\right) = 3i + 3j - 3k = 3\left(i + j - k\right) \\ \overrightarrow{AB} = \left(2i + 3j + 7k\right) - \left(i + 10k\right) = 3i + 3j - 3k = 3\left(i + j - k\right) \\ \overrightarrow{AB} = \left(2i + 3j + 7k\right) - \left(i + 10k\right) = 3i + 3j - 3k = 3\left(i + j - k\right) \\ \overrightarrow{AB} = \left(2i + 3j + 7k\right) - \left(i + 10k\right) = 3i + 3j - 3k = 3\left(i + j - k\right) \\ \overrightarrow{AB} = \left(2i + 3j + 7k\right) - \left(i + 10k\right) = 3i + 3j - 3k = 3\left(i + j - k\right) \\ \overrightarrow{AB} = \left(2i + 3j + 7k\right) - \left(i + 10k\right) = 3i + 3j - 3k = 3\left(i + j - k\right) \\ \overrightarrow{AB} = \left(2i + 3j + 7k\right) - \left(2i + 3k + 3k\right) + \left(2i + 3k$	2 Marks Correct solution
	$BL = \left(8i + ij + 3k\right) - \left(4i + 3j + ik\right) = 4i + 4j - 4k = 4\left(i + j - k\right)$	1 Mark Show they are
	AB is in the same direction as BC , B is a common point, so A, B and C are collinear	collinear
	Ratio of AB: BC is 3: 4.	

Q13bii	$l = \begin{bmatrix} 1\\0\\10 \end{bmatrix} + \lambda \begin{bmatrix} 1\\1\\-1 \end{bmatrix}$	1 Mark Correct solution
Q13biii	$ \begin{pmatrix} 4i + 3j + 7k \\ \vdots & -k \end{pmatrix} \cdot \begin{pmatrix} i + j - k \\ \vdots & -k \end{pmatrix} = 4 + 3 - 7 = 0 \therefore OB \text{ is perpendicular to line } l. $	1 Mark Correct solution
Q13biv	$A_{\Delta ABC} = \frac{1}{2} AC OB $ $A_{\Delta ABC} = \frac{1}{2} AC OB $ $A_{\Delta ABC} = \frac{1}{2} \left(8i + 7j + 3k\right) - (i + 10k)\right \times \sqrt{4^2 + 3^2 + 7^2}$ $A_{\Delta ABC} = \frac{1}{2} \left(7i + 7j - 7k\right) \times \sqrt{74}$ $A_{\Delta ABC} = \frac{1}{2} \sqrt{147} \times \sqrt{74}$ $A_{\Delta ABC} = \frac{1}{2} \sqrt{10878} = \frac{7}{2} \sqrt{222} units^2$	2 Marks Correct solution 1 Mark Finds <i>AC</i> or <i>OB</i>
Q13ci	$v^{2} = 189 - 42x - 7x^{2}$ $\frac{1}{2}v^{2} = \frac{189}{2} - 21x - \frac{7}{2}x^{2}$ $\ddot{x} = \frac{d}{dx}(\frac{1}{2}v^{2}) = -21 - 7x$ $\ddot{x} = -7(x+3) = -(\sqrt{7})^{2}(x - (-3))$	1 Mark Correct solution
Q13cii	$n = \sqrt{7}$ $T = \frac{2\pi}{\sqrt{7}}$	1 Mark Correct solution
Q13ciii	$ \begin{array}{r} 189 - 42x - 7x^2 = 0 \\ x^2 + 6x - 27 = 0 \\ (x + 9)(x - 3) = 0 \\ x = -9, x = 3 \\ Centre of motion is -3 \\ Amplitude is 6 \end{array} $	2 Marks Correct solution 1 Mark Finds both <i>x</i> values
Q13civ	Maximum speed occurs at centre of motion at $x = -3$. $v^2 = 189 - 42 \times (-3) - 7 \times (-3)^2$ $v^2 = 252$ $v = \pm 6\sqrt{7}$ \therefore Maximum speed is $6\sqrt{7} m/s$ and occurs at the centre of motion at $x = -3$	1 Mark Correct solution
Q14ai	$u = \frac{\pi}{2} - x$ du = -dx $x = \frac{\pi}{2}, u = 0$ $x = 0, u = \frac{\pi}{2}$	2 Marks Correct solution 1 Mark Correct substitution in terms of <i>u</i>

	$\int_{0}^{\frac{\pi}{2}} \frac{e^{\sin x}}{e^{\sin x} + e^{\cos x}} dx$ = $-\int_{\frac{\pi}{2}}^{0} \frac{e^{\sin(\frac{\pi}{2} - u)}}{e^{\sin(\frac{\pi}{2} - u)} + e^{\cos(\frac{\pi}{2} - u)}} du$ = $\int_{0}^{\frac{\pi}{2}} \frac{e^{\cos u}}{e^{\cos u} + e^{\sin u}} du$ = $\int_{0}^{\frac{\pi}{2}} \frac{e^{\cos x}}{e^{\cos x} + e^{\sin x}} dx$	
Q14aii	$\int_{0}^{\frac{\pi}{2}} \frac{e^{\sin x}}{e^{\sin x} + e^{\cos x}} dx = \int_{0}^{\frac{\pi}{2}} \frac{e^{\cos x}}{e^{\cos x} + e^{\sin x}} dx$ $\int_{0}^{\frac{\pi}{2}} \frac{e^{\sin x}}{e^{\sin x} + e^{\cos x}} dx = \frac{1}{2} \left(\int_{0}^{\frac{\pi}{2}} \frac{e^{\sin x}}{e^{\sin x} + e^{\cos x}} dx + \int_{0}^{\frac{\pi}{2}} \frac{e^{\cos x}}{e^{\cos x} + e^{\sin x}} dx \right)$ $\int_{0}^{\frac{\pi}{2}} \frac{e^{\sin x}}{e^{\sin x} + e^{\cos x}} dx = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{e^{\sin x} + e^{\cos x}}{e^{\sin x} + e^{\cos x}} dx$ $\int_{0}^{\frac{\pi}{2}} \frac{e^{\sin x}}{e^{\sin x} + e^{\cos x}} dx = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} 1 dx$ $\int_{0}^{\frac{\pi}{2}} \frac{e^{\sin x}}{e^{\sin x} + e^{\cos x}} dx = \frac{1}{2} [\frac{\pi}{2}]^{\frac{\pi}{2}}$ $\int_{0}^{\frac{\pi}{2}} \frac{e^{\sin x}}{e^{\sin x} + e^{\cos x}} dx = \frac{1}{2} [\frac{\pi}{2} - 0]$ $\int_{0}^{\frac{\pi}{2}} \frac{e^{\sin x}}{e^{\sin x} + e^{\cos x}} dx = \frac{\pi}{4}$	1 Mark Correct solution
Q14b	Suppose $\log_n(n-1)$ is rational, then $\log_n(n-1) = \frac{p}{q}$	2 Marks Correct solution
	where p and q are integers with no common factors, and $q \neq 0$ $n-1 = n^{\frac{p}{q}}$ $(n-1)^q = n^p$ If n is even, then RHS is even, LHS would be odd, which is a contradiction. If n is odd, then RHS is odd, LHS would be even, which is also a contradiction. $\therefore \log_n(n-1)$ is irrational	1 Mark Makes significant progress
Q14ci	$z^n + \frac{1}{z^n} = e^{in\theta} + e^{-in\theta}$	1 Mark Correct solution
	$z^{n} + \frac{1}{z^{n}} = \cos(n\theta) + i\sin(n\theta) + \cos(-n\theta) + i\sin(-n\theta)$ $z^{n} + \frac{1}{z^{n}} = \cos(n\theta) + i\sin(n\theta) + \cos(n\theta) - i\sin(n\theta)$	
	$z^{n} + \frac{1}{z^{n}} = 2\cos(n\theta)$	
Q14cii	$5z^{4} - 11z^{3} + 16z^{2} - 11z + 5 = 0$ Divide both sides by z^{2} $5z^{2} - 11z + 16 - 11z^{-1} + 5z^{-2} = 0$ $5(z^{2} + z^{-2}) = 11(z + z^{-1}) + 16 = 0$	4 Marks Correct solution
	$5 \times 2 \cos(2\theta) - 11 \times 2 \cos\theta + 16 = 0$	Finds all values of $\cos \theta$
	$10(2\cos^2\theta - 1) - 22\cos\theta + 16 = 0$	
	$20\cos^{2}\theta - 10 - 22\cos\theta + 16 = 0$ 20\cos^{2}\theta - 22\cos\theta + 6 = 0	2 Marks
L		Generate

_

	$10\cos^2\theta - 11\cos\theta + 3 = 0$	$10\cos^2\theta$
	$(2\cos\theta - 1)(5\cos\theta - 3) = 0$	$-11\cos\theta + 3 = 0$
	$\cos\theta = \frac{1}{2}, \ \cos\theta = \frac{3}{2}$	4.84-1
	$\frac{2}{\sqrt{3}}$ 5 4	1 Mark Generate
	$\sin\theta = \pm \frac{\sqrt{3}}{2}, \ \sin\theta = \pm \frac{1}{5}$	$5(z^2 + z^{-2})$
		$-11(z+z^{-1})$
	$1 \sqrt{3}$, $3 \sqrt{4}$,	+16 = 0
	$x = \frac{1}{2} \pm \frac{1}{2}i, \frac{1}{5} \pm \frac{1}{5}i$	
0144	C dr	2 Marks
Q140	$I_n = \int \frac{dx}{(x^2 + 1)^n}$	Correct solution
	$u = (x^2 + 1)^{-n}$ $v' = 1$	2 Marks
	$u = -2xn(x^2 + 1)^{-(n+1)}$ $v = x$	Makes significant
		progress
	$I_n = \frac{x}{1 - 1} - \int \frac{-2x^2 n dx}{1 - 1}$	4.84
	$x^{n} (x^{2}+1)^{n} \int (x^{2}+1)^{n+1} dx^{2} dx$	1 Mark
	$I_n = \frac{x}{(x^2 + 1)n} + 2n \left(\frac{x}{(x^2 + 1)n+1} \right)$	by parts to obtain
	$(x^{2} + 1)^{n}$ $\int (x^{2} + 1)^{n+2}$ x $\int (x^{2} + 1 - 1) dx$	<u>x</u>
	$I_n = \frac{1}{(x^2 + 1)^n} + 2n \int \frac{1}{(x^2 + 1)^{n+1}} dx$	$(x^2+1)^n$
	$x + 2x \left(\left(\frac{x^2 + 1}{x} \right) \right) + \frac{x^2}{x^2} \right)$	$-\left(\frac{-2x^2ndx}{(x^2+1)n+1}\right)$
	$I_n = \frac{1}{(x^2+1)^n} + 2n \int \left(\frac{1}{(x^2+1)^{n+1}} - \frac{1}{(x^2+1)^{n+1}} \right) dx$	$\int (x^2 + 1)^{n+2}$
	$I_n = \frac{x}{(x^2+1)^n} + 2n \int \left(\frac{1}{(x^2+1)^n} - \frac{1}{(x^2+1)^{n+1}}\right) dx$	
	$I_n = \frac{x}{(x^2 + 1)^n} + 2nI_n - 2nI_{n+1}$	
	$2nI_{n+1} = \frac{x}{(x^2+1)^n} + 2nI_n - I_n$	
	$2nI_{n+1} = \frac{x}{(2n-1)I_n} + (2n-1)I_n$	
	1 x 1	
	$I_{n+1} = \frac{1}{2n} \left[\frac{(x^2+1)^n}{(x^2+1)^n} + (2n-1)I_n \right]$	
	Replace n with $n-1$	
	$I_n = \frac{1}{2(n-1)} \left[\frac{x}{(n-1)(n-1)} + (2(n-1) - 1)I_{n-1} \right]$	
	$\frac{2(n-1)[(x^2+1)^{n-1}}{1} + \frac{1}{2} + \frac{1}{2}$	
	$I_n = \frac{1}{2(n-1)} \left[\frac{1}{(x^2+1)^{n-1}} + (2n-3)I_{n-1} \right]$	
Q14dii	$I_{1} = \int_{1}^{1} \frac{dx}{dx}$	2 Marks
	$\int_{0}^{1} (x^{2} + 1)$	Correct solution
	$I_{1} = [\tan^{-1} x]_{0}^{1}$ $I_{1} = \tan^{-1} 1 \tan^{-1} 0$	1 Mark
	$r_1 - tan = tan = 0$	Finds I_1
	$I_1 = \frac{1}{4}$	
	$c^1 dx$	
	$I_2 = \int \frac{ax}{(x^2 + 1)^2}$	
	$\begin{bmatrix} J_0 (x + 1) \\ 1 \begin{bmatrix} r & 1^1 \end{bmatrix}$	
	$I_2 = \frac{1}{2(2-1)} \left[\frac{1}{(x^2+1)^{2-1}} \right]_0 + (2 \times 2 - 3)I_{2-1} \right]_0$	
	$1[(1), 1]^{1}$	
	$I_{2} = \frac{1}{2} \left[\left(\frac{1}{(1^{2} + 1)} \right) + I_{1} \right]_{0}$	
	$I_{2} = \frac{1}{2} \left[\frac{1}{2} + \frac{\pi}{2} \right]$	
	$\begin{bmatrix} 2 & 2 & 2 & 4 \\ 1 & \pi \end{bmatrix}$	
	$I_2 = \frac{1}{4} + \frac{1}{8}$	

Q15a	$t = \tan \frac{x}{2}$	4 Marks Correct solution
	$dt = \frac{1}{2}\sec^2 \frac{1}{2}dx$ $2dt = \left(1 + \tan^2 \frac{x}{2}\right)dx$ $dx = \frac{2}{1 + t^2}dt$	3 Marks Correct primitive function in terms of
	x = 0, t = 0 $x = \frac{\pi}{2}, t = 1$	2 Marks Correct partial fraction
	$\cos x = \frac{1 - t^2}{1 + t^2}$	1 Mark Correct substitution
	$I = \int_{0}^{\frac{\pi}{2}} \frac{2}{4+5\cos x} dx$ $I = \int_{0}^{1} \frac{2}{4+5 \times \frac{1-t^{2}}{1+t^{2}}} \times \frac{2}{1+t^{2}} dt$	
	$I = \int_{0}^{1} \frac{\frac{1+t^{2}}{4}}{4(1+t^{2})+5(1-t^{2})} dt$ $I = \int_{0}^{1} \frac{4}{4} dt$	
	$I = \int_0^1 \frac{4}{(3+t)(3-t)} dt$	
	$\frac{4}{(3+t)(3-t)} = \frac{A}{3+t} + \frac{B}{3-t}$ A(3-t) + B(3+t) = 4	
	Let $t = 3$ 6B = 4 $B = \frac{2}{3}$	
	Let $t = -3$ 6A = 4 $A = \frac{2}{3}$	
	$I = \frac{2}{3} \int_0^1 \left(\frac{1}{3+t} + \frac{1}{3-t} \right) dt$ $I = \frac{2}{3} [\ln 3+t - \ln 3-t]_0^1$	
	$I = \frac{2}{3} [(\ln 3 + 1 - \ln 3 - 1) - (\ln 3 + 0 - \ln 3 - 0)]$ $I = \frac{2}{3} \ln 2$	
Q15bi	$v = 4e^{-2x} - 3$ $v^2 = 16e^{-4x} - 24e^{-2x} + 9$ $\frac{1}{2}v^2 = 8e^{-4x} - 12e^{-2x} + \frac{9}{2}$	2 Marks Correct solution 1 Mark
	$\ddot{x} = \frac{d}{dx} \left(\frac{1}{2}v^2\right) = -32e^{-4x} + 24e^{-2x}$	Correct \ddot{x}

	Initially $x = 0$ $\ddot{x} = -32e^0 + 24e^0$	
	x = -8	
Q15bii	$v = \frac{dx}{dt} = 4e^{-2x} - 3$ $\frac{dx}{dt} = \frac{4}{e^{2x}} - 3 = \frac{4 - 3e^{2x}}{e^{2x}}$ $\frac{dt}{dx} = \frac{e^{2x}}{4 - 3e^{2x}}$ $t = \int \frac{e^{2x}}{4 - 3e^{2x}} dx$ $t = -\frac{1}{6} \ln 4 - 3e^{2x} + C$ $t - C = -\frac{1}{6} \ln 4 - 3e^{2x} $ $C - t = \frac{1}{6} \ln 4 - 3e^{2x} $ $4 - 3e^{2x} = Ae^{-6t}$ t = 0, x = 0 $4 - 3e^{0} = A \times e^{0}$	3 Marks Correct solution 2 Marks Finds $t = -\frac{1}{6}\ln 4 - 3e^{2x} + C$ 1 Mark Finds $\frac{dt}{dx} = \frac{e^{2x}}{4 - 3e^{2x}}$
	$A = 1$ $4 - 3e^{2x} = e^{-6t}$ $3e^{2x} = 4 - e^{-6t}$ $e^{2x} = \frac{1}{3} \left(\frac{4e^{6t} - 1}{e^{6t}} \right)$ $2x = \ln \left[\frac{1}{3} \left(\frac{4e^{6t} - 1}{e^{6t}} \right) \right]$ $x = \frac{1}{2} \ln \left[\frac{1}{3} \left(\frac{4e^{6t} - 1}{e^{6t}} \right) \right]$	
Q15biii	$e^{2x} = \frac{1}{3} \left(\frac{4e^{6t} - 1}{e^{6t}} \right)$ $e^{-2x} = 3 \left(\frac{e^{6t}}{4e^{6t} - 1} \right)$ $v = 4e^{-2x} - 3$ $v = 4 \times 3 \left(\frac{e^{6t}}{4e^{6t} - 1} \right) - 3$ $v = 3 \left(\frac{4e^{6t}}{4e^{6t} - 1} - 1 \right)$ $v = 3 \left(\frac{4e^{6t}}{4e^{6t} - 1} - \frac{4e^{6t} - 1}{4e^{6t} - 1} \right)$ $v = \frac{3}{4e^{6t} - 1}$	1 Mark Correct solution
Q15ci	$\left(\sqrt{a} - \sqrt{b}\right)^2 \ge 0$ $a - 2\sqrt{ab} + b \ge 0$ $a + b \ge 2\sqrt{ab}$ $\therefore \frac{a+b}{2} \ge \sqrt{ab}$	1 Mark Correct solution

Q15cii	$\frac{\frac{a+b}{2} + \frac{c+d}{2}}{2} \ge \sqrt{\left(\frac{a+b}{2}\right)\left(\frac{c+d}{2}\right)}$	2 Marks Correct solution
	$\frac{a+b+c+d}{4} \ge \sqrt{\frac{ac+ad+bc+bd}{4}}$ $\frac{a+b+c+d}{4} \ge \frac{\sqrt{ac+ad+bc+bd}}{2}$ $\frac{a+b+c+d}{2} \ge \sqrt{ac+ad+bc+bd}$ $\therefore (a+b+c+d)^2 \ge 4(ac+bc+bd+ad) \dots \dots (1)$	$ \frac{1 \text{ Mark}}{\text{Shows}} \\ \frac{\frac{a+b}{2} + \frac{c+d}{2}}{2} \\ \geq \sqrt{\left(\frac{a+b}{2}\right)\left(\frac{c+d}{2}\right)} $
	Alternatively Let $a = a + b$, $b = c + d$ $\frac{a + b}{2} \ge \sqrt{ab}$ $\frac{a + b + c + d}{2} \ge \sqrt{(a + b)(c + d)}$ $\frac{(a + b + c + d)^2}{4} \ge (a + b)(c + d)$ $\frac{(a + b + c + d)^2}{4} \ge (ac + bc + bd + ad)$ $\therefore (a + b + c + d)^2 \ge 4(ac + bc + bd + ad)$	
Q15ciii	Similarly $\frac{a+c}{2} + \frac{b+d}{2} \ge \sqrt{\left(\frac{a+c}{2}\right)\left(\frac{b+d}{2}\right)}$ $(a+b+c+d)^2 \ge 4(ab+ad+bc+cd) \dots \dots (2)$ $\frac{a+d}{2} + \frac{b+c}{2} \ge \sqrt{\left(\frac{a+d}{2}\right)\left(\frac{b+c}{2}\right)}$ $(a+b+c+d)^2 \ge 4(ab+ac+bd+cd) \dots \dots (3)$ $(1) + (2) + (3)$ $3(a+b+c+d)^2 = 4[(ac+bc+bd+ad) + (ab+ad+bc+cd) + (ab+ac+bd+cd)]$ $3(a+b+c+d)^2 = 4[(ac+bc+bd+ad) + (ab+ad+bc+cd) + (ab+ac+bd+cd)]$ $3(a+b+c+d)^2 = 4(2ab+2ad+2bc+2cd+2bd+2ac)$ $(a+b+c+d)^2 = \frac{8}{3}(ab+ad+bc+cd+bd+ac)$	2 Marks Correct solution 1 Mark Makes significant progress
Q16ai	$\begin{array}{l} 0 < x < 1 \\ 1 < x + 1 < 2 \\ \frac{1}{1} > \frac{1}{x + 1} > \frac{1}{2} \\ \frac{1}{2} < \frac{1}{x + 1} < 1 \end{array}$ Multiply both sides by $x(1 - x)^3$ $\frac{1}{2}x(1 - x)^3 < \frac{x(1 - x)^3}{1 + x} < x(1 - x)^3$ Since $x > 0$ and $(1 - x)^3 > 0$ for $0 < x < 1$, so the inequalities hold.	2 Marks Correct solution 1 Mark Makes significant progress

Q16aii	$\frac{1}{2}x(1-x)^3 < \frac{x(1-x)^3}{1+x} < x(1-x)^3$	1 Mark Correct solution
	Since all three functions are positive for $0 < x < 1$, then areas under the curve also follows the same inequalities.	
	$\frac{1}{2}\int_0^1 x(1-x)^3 dx < \int_0^1 \frac{x(1-x)^3}{1+x} dx < \int_0^1 x(1-x)^3 dx$	
Q16aiii	$I = \int_0^1 x(1-x)^3 dx$	3 Marks Correct solution
	u = 1 - x du = -dx x = 1, u = 0 x = 0 u = 1	2 Marks Makes significant progress
	$I = \int_{1}^{0} -(1-u)u^{3} dx$	1 Mark Finds $\int_{-1}^{1} x(1-x)^3 dx$
	$I = \int_{0}^{1} (u^{3} - u^{4}) dx$, $[u^{4} u^{5}]^{1}$	$\int_{0}^{J_{0}}$ or $\frac{1}{2}\int_{0}^{1}x(1-x)^{3}dx$
	$I = \left[\frac{1}{4} - \frac{1}{5}\right]_0$ $I = \frac{1}{4} - \frac{1}{5}$	2 J ₀
	$I = \frac{1}{20}$	
	$\frac{1}{2} \int_0^1 x(1-x)^3 dx = \frac{1}{40}$	
	$\frac{1}{2} \int_{0}^{1} x(1-x)^{3} dx < \int_{0}^{1} \frac{x(1-x)^{3}}{1+x} dx < \int_{0}^{1} x(1-x)^{3} dx$ $\frac{1}{40} < \frac{67}{12} - 8\ln 2 < \frac{1}{20}$ $-\frac{667}{120} < -8\ln 2 < -\frac{83}{15}$	
	Divide both sides by -8, inequality sign changes $\frac{667}{960} > \ln 2 > \frac{83}{120}$ $\therefore \frac{83}{120} < \ln 2 < \frac{667}{960}$	
Q16bi	$b_2 = b_1(b_1 + 1) = 1 \times 2 = 2$ $b_3 = b_2(b_2 + 1) = 2 \times 3 = 6$ $b_4 = b_3(b_3 + 1) = 6 \times 7 = 42$	1 Mark Correct solution
Q16bii	$b_{n+1} = 1 + \sum_{r=1}^{n} (b_r)^2 = 1 + (b_1)^2 + (b_2)^2 + (b_3)^2 + \dots + (b_n)^2$	3 Marks Correct solution
	1. Prove statement is true for $n = 1$ $LHS = b_2 = 2$ $RHS = 1 + (b_1)^2 = 1 + 1^2 = 2$ LHS = PHS	2 Marks Makes significant progress
	\therefore Statement is true for $n = 1$.	1 Mark

	2. Assume statement is true for $n = k$, k some positive integer $b_{k+1} = 1 + \sum_{r=1}^{k} (b_r)^2 = 1 + (b_1)^2 + (b_2)^2 + (b_3)^2 + \dots + (b_k)^2$ 3. Prove statement is true for $n = k + 1$. $b_{k+2} = 1 + \sum_{r=1}^{k+1} (b_r)^2 = 1 + (b_1)^2 + (b_2)^2 + (b_3)^2 + \dots + (b_k)^2 + (b_{k+1})^2$ $LHS = b_{k+2}$ $LHS = b_{k+2}$ $LHS = (b_{k+1})^2 + b_{k+1}$ $LHS = (b_{k+1})^2 + 1 + \sum_{r=1}^{k} (b_r)^2$ $LHS = (b_{k+1})^2 + 1 + (b_1)^2 + (b_2)^2 + (b_3)^2 + \dots + (b_k)^2$ $LHS = 1 + (b_1)^2 + (b_2)^2 + (b_3)^2 + \dots + (b_k)^2 + (b_{k+1})^2$ $LHS = 1 + \sum_{r=1}^{k+1} (b_r)^2$ LHS = RHS \therefore statement is true by mathematical induction for all integer $n \ge 1$	Proves for the initial case
Q16biii	$ b_5 = b_4(b_4 + 1) = 42 \times 43 = 1806 b_5 = 1 + (b_1)^2 + (b_2)^2 + (b_3)^2 + (b_4)^2 b_5 = 1^2 + 1^2 + 2^2 + 6^2 + 42^2 = 1806 $	1 Mark Correct solution
Q16biv	$\begin{split} RTP: & (2b_{n+1}+1)^2 = (2b_n+1)^2 + (2b_{n+1})^2 \\ LHS &= (2b_{n+1}+1)^2 \\ LHS &= (2b_{n+1})^2 + 4b_{n+1} + 1 \\ LHS &= (2b_{n+1})^2 + 4b_n(b_n+1) + 1 \\ LHS &= (2b_{n+1})^2 + 4(b_n)^2 + 4b_n + 1 \\ LHS &= (2b_{n+1})^2 + (2b_n+1)^2 \\ LHS &= RHS \\ &\therefore (2b_{n+1}+1)^2 = (2b_n+1)^2 + (2b_{n+1})^2 \end{split}$	1 Mark Correct solution
Q16bv	$RTP: (2b_{n+1} + 1)^2 = (2b_1 + 1)^2 + \sum_{r=2}^{n+1} (2b_r)^2$ $LHS = (2b_{n+1} + 1)^2$ $LHS = (2b_{n-1} + 1)^2 + (2b_{n+1})^2$ $LHS = (2b_{n-2} + 1)^2 + (2b_{n-1})^2 + (2b_n)^2 + (2b_{n+1})^2$ $$ $LHS = (2b_1 + 1)^2 + (2b_2)^2 + (2b_3)^2 + (2b_4)^2 + \dots + (2b_n)^2 + (2b_{n+1})^2$ $LHS = (2b_1 + 1)^2 + \sum_{r=2}^{n+1} (2b_r)^2$ $\therefore (2b_{n+1} + 1)^2 = (2b_1 + 1)^2 + \sum_{r=2}^{n+1} (2b_r)^2$	2 Marks Correct solution 1 Mark Makes significant progress
Q16bvi	$(2b_5 + 1)^2 = (2b_1 + 1)^2 + \sum_{r=2}^{5} (2b_r)^2$ $(2 \times 1806 + 1)^2 = (2 \times 1 + 1)^2 + (2b_2)^2 + (2b_3)^2 + (2b_4)^2 + (2b_5)^2$ $3613^2 = 3^2 + (2 \times 2)^2 + (2 \times 6)^2 + (2 \times 42)^2 + (2 \times 1806)^2$ $3613^2 = 3^2 + 4^2 + 12^2 + 84^2 + 3612^2$	1 Mark Correct solution