
HSC 2023 Mathematics Extension 2 Solutions

by Ty Webb

1. C 2. D 3. B 4. C. 5. A 6. B 7. A 8. D 9. D 10. B

Reasoning for Multiple Choice in HSC exams is not required however it is instructive
to include them here.

For this reasoning, elimination (eg. it is not A,B nor C ∴ it isD) followed by validation
(giving reasons for why it is D when D is the correct answer) is provided for each
question.

Efficiency of reasoning: For Q1-9 validation is more efficient. For Q10 elimination is
more efficient.

1. Elimination.

(a+ ib)3 = a3 + 3ia2b− 3ab2 − ib3

= (a3 − 3ab2) + i(3a2b+ b3)− 2ib3

̸= (a3 − 3ab2) + i(3a2b+ b3) ∴ it is not A

(a+ ib)3 = a3 + 3ia2b− 3ab2 − ib3

= (a3 + 3ab2) + i(3a2b+ b3)− 6ab2 − 2ib3

̸= (a3 + 3ab2) + i(3a2b+ b3) ∴ it is not B

(a+ ib)3 = a3 + 3ia2b− 3ab2 − ib3

= (a3 + 3ab2) + i(3a2b− b3)− 6ab2

̸= (a3 + 3ab2) + i(3a2b− b3) ∴ it is not D

It is not A,B nor D hence it is C.

1. Validation

(a+ ib)3 = a3 + 3ia2b− 3ab2 − ib3

= (a3 − 3ab2) + i(3a2b− b3)

∴ it is C

2. Elimination

p = an animal is a herbivore, q = it eats meat.

The statement is p ⇒ ¬q



A is p ⇒ q which is not the converse ∴ it is not A

B is ¬p ⇒ q which is not the converse ∴ it is not B

C is q ⇒ ¬p which is not the converse ∴ it is not C

It is not A,B nor C ∴ it is D

2. Validation

D is ¬q ⇒ p which is the converse ∴ it is D.

3. Elimination

z = e−
2πi
3

−z = eπi · e− 2πi
3 = e

πi
3 ̸= z̄ ∴ it is not A

−z3 = eπi · e−2πi = −1 ̸= z̄ ∴ it is not C

z4 = z(z3) = z(1) = z ̸= z̄ ∴ it is not D

It is neither A,C nor D ∴ it is B

3. Validation

z2 = e−
4πi
3

+2πi = e
2πi
3 = z̄ ∴ it is B

4. Elimination.

A is “Whichever number x greater than 1 you pick, it is possible to find a positive
number r such that lnx

x3 < r”

∴ it is not A

B is “It is possible to find a number x greater than 1 such that for whichever positive
number r you pick, lnx

x3 < r”

∴ it is not B

D is “It is possible to find a positive number r such that for whichever number x
greater than 1 you pick, lnx

x3 < r”

∴ it is not D



It is not A,B nor D ∴ it is C

4. Validation

C is “Whichever positive number r you pick, it is possible to find a number x greater
than 1 such that lnx

x3 < r”

∴ it is C.

5. Elimination

ℓ2 =

 3
−10
1

− µ

−1
3
1

 and so ℓ1 and ℓ2 are parallel and so it is not B nor D

With λ = −4,

−1
2
5

− 4

−1
3
1

 =

 3
−10
1

 and so (3,−10, 1) is on ℓ1 and so it is not

correct to say they do not intersect, hence it is not C

It is not B,C nor D ∴ it is A

5. Validation.

(3,−10, 1) is on ℓ1 and they are parallel and so they are the same line. Hence it is A

6. Elimination.

For A, x = 1
2
(cos 2t+ 1)− sin 2t = 1

2
(cos 2t− 2 sin 2t) + 1

2

ẋ = 2 cos t(− sin t)− 2 cos 2t = − sin 2t− 2 cos 2t
ẍ = −2 cos 2t+4 sin 2t = −4(1

2
(cos 2t−2 sin 2t)) = −4(x− 1

2
) which is simple harmonic

so it is not A

For C, ẋ = 6 cos 3t+ 12 sin 3t

ẍ = −18 sin 3t+36 cos 3t = −9(2 sin 3t−4 cos 3t) = −9(x−5) which is simple harmonic
and so it is not C

For D, ẋ = −8 sin(2t+ π
2
) + 10 cos(2t− π

4
)

ẍ = −16 cos(2t+ π
2
)− 20 sin(2t− π

4
) = −4(4 cos(2t+ π

2
) + 5 sin(2t− π

4
))) = −4x which

is simple harmonic and hence it is not D.

It is not A,C not D ∴ it is B



6. Validation

For B, ẋ = 4 cos 4t− 8 sin 2t

ẍ = −16 sin 4t− 16 cos 2t and
...
x = −64 cos 4t+ 32 sin 2t

If it were simple harmonic we would have ẍ = −n2(x− c) for some positive number n
and a real number c in which case dẍ

dx
would be the negative constant −n2.

But dẍ
dx

= ˙̇ẋ
ẋ
= −64 cos 4t+32 sin 2t

4 cos 4t−8 sin 2t
which is not constant and so it is not simple harmonic

in which case the answer is B

To see that it not constant we can substitute values for t and get different results, eg.
dẍ
dx
|t=0 = −16 but dẍ

dx
|t=−π

4
= 8

7. Elimination

Arg(−i) = Arg(−2i) = −π
2
and so Arg(−i) + Arg(−2i) = −π

But Arg(i · 2i) = Arg(−2) = π ̸= −π so it is not B

e0i = e2πi = 1 but 0 ̸= 2π so it is not C

−1− i =
√
2e−

3πi
4 and arctan(−1

−1
) = π

4
̸= −3π

4
so it is not D

It is not B,C nor D hence it is A

7. Validation

If θ = arg(x+ iy) and x ̸= 0 then tan θ = y
x
and x+ iy = reiθ where r =

√
x2 + y2

Hence it is A.

8. Elimination

For A, shaded region includes 0 but |0− i| = 1 < 2 = 2|0− 1| so it is not A

For B, shaded region included 1 but |1− i| =
√
2 > 0 = 2|1− 1| so it is not B

For C, shaded region includes 1 but |1− 1| = 0 < 2
√
2 = 2|1− i| so it is not C

It is not A,B nor C and hence it is D



8. Validation

For D, (x− 1)2 + y2 < 4(x2 + (y − 1)2)

∴ x2 − 2x+ 1 + y2 < 4x2 + 4y2 − 8y + 4

∴ 3x2 + 2x+ 3y2 − 8y + 3 > 0

∴ x2 + 2
3
x+ 1

9
+ y2 − 8

3
y + 16

9
> 17

9
− 1

∴ (x+ 1
3
)2 + (y − 4

3
)2 > 8

9

which is outside a circle with centre (−1
3
, 4
3
) and radius 2

√
2

3
which concurs with the

shaded region in the question and so it is D.

9. Elimination

r and Projrv are in the same direction and so r · Projrv ≥ 0 ∴ r · v ≥ 0 and so it is
not A nor B

Projva and v are in opposite directions and so v · Projva ≤ 0 ∴ a · v ≤ 0 and so it is
not C

It is not A,B nor C hence it is D

9. Validation

As from above we see r · v ≥ 0 and a · v ≤ 0 and so it is D.

10. Elimination

For A, if
˜
a and

˜
b are unit vectors and

˜
a ·

˜
b = 1 then

˜
a =

˜
b and then

˜
b ·
˜
c and

˜
c ·
˜
a should

be the same but they are 2 and 3 respectively

If
˜
a and

˜
c are unit vectors and the angle between them is α then

˜
c ·

˜
a = cosα = 3 but

−1 ≤ cosα ≤ 1

Likewise if
˜
b and

˜
c are unit vectors and the angle between them is β then

˜
b·
˜
c = cos β = 2

but −1 ≤ cos β ≤ 1

Hence it can’t be A

˜
0 ·

˜
b = 0 ̸= 1 hence it can’t be C



For D, consider
˜
a · (r

˜
a + s

˜
b + t

˜
c) = r|

˜
a|2 + s

˜
a ·

˜
b + t

˜
c ·

˜
a = r|

˜
a|2 + s + 3t > 0. Now if

the proposition were true
˜
a · (r

˜
a + s

˜
b + t

˜
c) =

˜
a ·

˜
0 = 0 - contradiction, hence it isn’t

true and it can’t be D

It is not A,C nor D hence it is B

10. Validation

Suppose A = (2, 0, 0), B = (1
2
,
√
15
2
, 0) and C = (3

2
,
√
15
6
, 2

√
3

3
)

Then A,B,C lie on the sphere x2 + y2 + z2 = 4

Check A : 22 + 02 + 02 = 4

Check B : (1
2
)2 + (

√
15
2
)2 + 02 = 4 and

Check C : (3
2
)2 + (

√
15
6
)2 + (2

√
3

3
)2 = 4

Now checking the dot products

˜
a ·

˜
b = 2× 1

2
+ 0×

√
15
2

+ 0× 0 = 1

˜
b ·

˜
c = 1

2
× 3

2
+

√
15
2

×
√
15
6

+ 0× 2
√
3

3
= 2

˜
c ·

˜
a = 3

2
× 2 +

√
15
6

× 0 + 2
√
3

3
× 0 = 3

Hence the answer is B

11a. z = 3±
√
32−4×1×4

2
= 3±i

√
7

2

11b. cos−1 1×−1+2×4−3×2√
12+22+32

√
12+42+22

= cos−1 1√
294

≈ 87◦

11c. If O = (0, 0, 0) and the line is r =
−→
OA+ λ

−→
AB ∀λ ∈ R then

r =

−3
1
5

+ λ

0 + 3
2− 1
3− 5

 =

−3
1
5

+ λ

 3
1
−2


11d. Since ABCD is a parallelogram

−→
AB =

−−→
DC

Since ABEF is a parallelogram
−→
AB =

−→
FE

∴
−−→
DC =

−→
FE ∴

−−→
CD =

−→
EF and so CDFE is a parallelogram.

11e. Period= 2π√
9
= 2π

3
and centre is x = 4



11f. 5x−3
(x+1)(x−3)

≡ A
x+1

+ B
x−3

⇒ 5x− 3 ≡ A(x− 3) +B(x+ 1) ≡ (A+B)x+B − 3A

∴ A+ B = 5 and B − 3A = −3 ∴ A+ B − (B − 3A) = 4A = 5 + 3 = 8 and so A = 2
and B = 5− 2 = 3 whereupon 5x−3

(x+1)(x−3)
≡ 2

x+1
+ 3

x−3∫ 2

0

5x− 3

(x+ 1)(x− 3)
=

∫ 2

0

(
2

x+ 1
+

3

x− 3

)
dx

= [2 ln |x+ 1|+ 3 ln |x− 3|]20
= 2 ln 3 + 3 ln 1− (2 ln 1 + 3 ln 3)

= − ln 3

12a. If
√
23 ∈ Q then ∃ coprime p, q : p

q
=

√
23 ∴ p2

q2
= 23 ∴ p2 = 23q2 ∴ 23|p2 ∴ 23|p

Hence ∃x ∈ Z : p = 23x ∴ (23x)2 = 23q2 and so 23x2 = q2 ∴ 23|q2 and so 23|q
contradicting coprimality of p, q

Hence
√
23 is irrational

12b. ∀x, y ∈ R : x2 + y2 ̸= 0 we have

(x− y)2 = x2 − 2xy + y2

≥ 0

⇐⇒ x2 + 2xy + y2 ≤ 2x2 + 2y2

⇐⇒ (x+ y)2

x2 + y2
≤ 2

Hence
(x+ y)2

x2 + y2
≤ 2

12ci.

From the diagram sin θ =
|
˜
F |
mg

and as
˜
F is in the opposite direction to

˜
i,

˜
F = −(mg sin θ)

˜
i

12cii. With acceleration
˜
a(t),

˜
F = m

˜
a(t) = −mg sin θ

˜
i and so we have



˜
a(t) = −g sin θ

˜
i

˜
v(t) =

∫ t

0

−g sin θ
˜
i dT

= [−gT sin θ
˜
i]t0

= −gt sin θ
˜
i+

˜
0

= −gt sin θ
˜
i

12d. If z3 = 2− 2i =
√
22 + 22e−i tan−1 2

2 = 2
√
2e−

πi
4
+2πki = 2

√
2e

(8k−1)πi
4 ∀k ∈ Z

then z =
√
2e

(8k−1)πi
12 for k = 0,±1

⇒ z =
√
2e−

πi
12 ,

√
2e

7πi
12 ,

√
2e−

3πi
4

12ei. Coefficients are all real and so non-real zeros occur as conjugate pairs and since
2 + i is a zero so too is 2 + i = 2− i.

12eii. If remaining zeros are α, β then α+ β + 2 + i+ 2− i = α+ β + 4 = −−3
1

= 3 ∴
α + β = −1. Also αβ(2 + i)(2− i) = 5αβ = −30

1
= −30 and so αβ = −6

β = −1− α so α(−1− α) = −α− α2 = −6 and so α2 + α− 6 = (α+ 3)(α− 2) = 0 so
w.l.o.g., α = 2, β = −3

13a. Let x = −2 + 3 sin θ. Then dx = 3 cos θ dθ, θ = sin−1 x+2
3

and 1− x = 3− 3 sin θ.

Also cos θ =
√

1− (x+2
3
)2 =

√
5−4x−x2

3
. Hence∫

1− x√
5− 4x− x2

dx =

∫
3− 3 sin θ

3 cos θ
· 3 cos θ dθ

=

∫
(3− 3 sin θ) dθ

= 3θ + 3 cos θ + C

= 3 sin−1 x+ 2

3
+
√
5− 4x− x2 + C

13bi. d
dk
(k2 − 2k − 3) = 2k − 2 > 0 when k > 1 and so is increasing for k > 1. Also

k2 − 2k − 3 = (k − 3)(k + 1) = 0 ⇒ k = −1, 3 ∴ k2 − 2k − 3 ≥ 0 for k ≥ 3.

13bii. The statement is true for n = 3 since 23 = 8 ≥ 7 = 32 − 2

If the statement is true for n = k then 2k ≥ k2 − 2 and so

2k+1 − (k + 1)2 + 2 = 2(2k)− k2 − 2k + 1

≥ 2(k2 − 2)− k2 − 2k + 1

= k2 − 2k − 3

≥ 0 for k ≥ 3 from 13bi



and so 2k+1 ≥ (k + 1)2 − 2 which means the statement is true for n = k + 1.

Therefore by the principle of mathematical induction the statement is true for all
positive integers n ≥ 3.

13ci. v(0) =

(
40 cos 30◦

40 sin 30◦

)
=

(
20
√
3

20

)
13cii. If r(t) =

(
x(t)
y(t)

)
then ẍ = −4ẋ and ÿ = −10− 4ẏ∫

dẋ
ẋ
=
∫
−4 dt ∴ ln ẋ = −4t+ C1 and t = 0 ⇒ ẋ = 20

√
3 ∴ C1 = ln(20

√
3).

Now ln ẋ = −4t+ ln(20
√
3) and so ẋ = e−4t+ln(20

√
3) = 20

√
3e−4t

Likewise
∫

dẏ
5
2
+ẏ

=
∫
−4dt ∴ ln(5

2
+ ẏ) = −4t+C2 and t = 0 ⇒ ẏ = 20 and so C2 = ln 45

2

5
2
+ ẏ = e−4t+ln 45

2 = 45
2
e−4t and so ẏ = 45

2
e−4t − 5

2

Hence v(t) =

(
20
√
3e−4t

45
2
e−4t − 5

2

)
13ciii. x =

∫
20
√
3e−4t dt = −5

√
3e−4t + C3 and t = 0 ⇒ x = 0 and so C3 = 5

√
3

whereupon x = 5
√
3(1− e−4t)

Likewise y =
∫
(45
2
e−4t − 5

2
) dt = −45

8
e−4t − 5t

2
+ C4 and t = 0 ⇒ y = 0 and so

C4 =
45
8
whereupon y = 45

8
(1− e−4t)− 5

2
t and so

r(t) =

(
5
√
3(1− e−4t)

45
8
(1− e−4t)− 5

2
t

)
13civ. 45

8
(1− e−4t)− 5

2
t = 0 ⇒ 1− e−4t = 4t

9
and from the graph t ≈ 2.25 and so

range ≈ x(2.25) = 5
√
3(1− e−4×2.25) ≈ 8.7m

14ai |z + w|2 =

∣∣∣∣∣
√
3

2
+

i

2
−

√
2

2
+

i
√
2

2

∣∣∣∣∣
=

(√
3

2
−

√
2

2

)2

+

(
1

2
+

√
2

2

)2

=
3

4
−

√
6

2
+

1

2
+

1

4
+

√
2

2
+

1

2

=
4−

√
6 +

√
2

2

14aii. As OACB is a rhombus, OC bisects ∠AOB. Hence ∠AOC = 1
2
(3π

4
− π

6
) = 7π

24



14aiii.Since diagonals AB and OC of the rhombus bisect each other at right angles,

cos
7π

24
=

1
2
OC

OA

=
1
2
|z + w|
|z|

=
1

2

√
4−

√
6 +

√
2

2

=
1

2

√
8− 2

√
6 + 2

√
2

4

=

√
8− 2

√
6 + 2

√
2

2

14b. If n is the angular frequency then 2π
n

= 8π ∴ n = 1
4
and so the first time they

collide after t = 2π s is such that 4 cos t
4
= 4 cos t−2π

4
= 4 sin t

4
∴ tan t

4
= 1 so t

4
= 5π

4

Now t = 5π and 4 cos 5π
4
= −2

√
2. Hence they first collide after 5π s at 2

√
2 m to the

left of the origin.

14ci. If acceleration is a then when going up, Ma = −Mg − kMv2

so a = v dv
dx

= −g − kv2 and so∫ 0

v0

v dv

g + kv2
=

1

2k

∫ 0

v0

2kv dv

g + kv2
=

∫ H

0

−dx[
1

2k
ln(g + kv2)

]0
v0

= [−x]H0

1

2k
ln g − 1

2k
ln(g + kv20) = −H + 0

∴ H =
1

2k
ln(g + kv20)−

1

2k
ln g

=
1

2k
ln

(
g + kv20

g

)
14cii. When going down, Ma = Mg − kMv2

so a = v dv
dx

= g − kv2 and so



∫ v1

0

v dv

g − kv2
= − 1

2k

∫ v1

0

−2kv dv

g − kv2
=

∫ H

0

dx[
− 1

2k
ln(g − kv2)

]v1
0

= [x]H0

− 1

2k
ln(g − kv21) +

1

2k
ln g = H − 0

1

2k
ln

(
g

g − kv21

)
=

1

2k
ln

(
g + kv20

g

)
(g − kv21)(g + kv20) = g2

g2 − gkv21 + gkv20 − k2v20v
2
1 = g2

∴ g(v20 − v21) = kv20v
2
1

15ai. Jn =

∫ π
2

0

sinn θ dθ

=

∫ π
2

0

sin θ · sinn−1 θ dθ

=

∫ π
2

0

(
d

dθ
(− cos θ)

)
· sinn−1 θ dθ

= [− cos θ sinn−1 θ]
π
2
0 −

∫ π
2

0

− cos θ · d

dθ
sinn−1 θ dθ

=

∫ π
2

0

(n− 1) cos2 θ sinn−2 θ dθ

= (n− 1)

∫ π
2

0

(1− sin2 θ) sinn−2 θ dθ

= (n− 1)

∫ π
2

0

sinn−2 θ dθ − (n− 1)

∫ π
2

0

sinn θ dθ

= (n− 1)Jn−2 − (n− 1)Jn

Jn + (n− 1)Jn = (n− 1)Jn−2

nJn = (n− 1)Jn−2

Jn =
n− 1

n
Jn for all integers n ≥ 2

15aii. In =
∫ 1

0
xn(1− x)n dx where n is a positive integer and x = sin2 θ

dx = 2 sin θ cos θ dθ, 1− x = cos2 θ, when x = 0, θ = 0 and when x = 1, θ = π
2
and now



In =

∫ π
2

0

sin2n θ cos2n θ · 2 sin θ cos θ dθ

=

∫ π
2

0

2 sin2n+1 θ cos2n+1 θ dθ

=
1

22n+1

∫ π
2

0

(2 sin θ cos θ)2n+1 · 2 dθ

=
1

22n+1

∫ π

0

sin2n+1 2θ d(2θ)

=
1

22n+1

∫ π

0

sin2n+1 θ dθ

=
1

22n

∫ π
2

0

sin2n+1 θ dθ by symmetry

15aii (alternative solution).

Where B is the Beta function, using the identity
∫ π

2

0
sin2a−1 θ cos2b−1 θ dθ = 1

2
B(a, b)

with a = b = n+ 1 we have

In = B(n+ 1, n+ 1)

= 2

∫ π
2

0

sin2n+1 θ cos2n+1 θ dθ

=
2

22n+1

∫ π
2

0

(2 sin θ cos θ)2n+1 dθ

=
1

22n

∫ π
2

0

sin2n+1 θ dθ

15aiii. From 15ai and 15aii,

In =
1

22n
J2n+1

=
1

22n
· (2n+ 1)− 1

2n+ 1
J(2n+1)−2

=
1

22n−1
· n

2n+ 1
J2n−1

=
1

22n−1
· n

2n+ 1
J2(n−1)+1

=
1

22n−1
· n

2n+ 1
· 22(n−1)In−1

=
n

4n+ 2
In−1 for all integers n ≥ 1

15aiii. (alternative solution) Since B(a, b) = Γ(a)Γ(b)
Γ(a+b)

where B is the Beta function and

Γ is the Gamma function and Γ(x + 1) = x! for positive integers x we have that for

positive integers a, b, B(a, b) = (a−1)!(b−1)!
(a+b−1)!

and so if a = b = n+ 1 then



In = B(n+ 1, n+ 1)

=
(n!)2

(2n+ 1)!

=
((n− 1)!n)2

(2n+ 1)2n(2n− 1)!

=
n

4n+ 2
· ((n− 1)!)2

(2n− 1)!

=
n

4n+ 2
B(n, n)

=
n

4n+ 2
In−1 for all integers n ≥ 1

15bi.
−→
LP =

−→
LA+

−−→
AD +

−−→
DP

= −1

2˜
b+

˜
d+

1

2
(
˜
c−

˜
d)

=
1

2
(−

˜
b+

˜
c+

˜
d)

15bii. |
−→
AB|2 + |

−→
AC|2 + |

−−→
AD|2 + |

−−→
BC|2 + |

−−→
BD|2 + |

−−→
CD|2 − 4(|

−→
LP |2 + |

−−→
MQ|2 + |

−−→
NR|2)

= |
˜
b|2+|

˜
c|2+|

˜
d|2+|

˜
c−

˜
b|2+|

˜
d−

˜
b|2+|

˜
d−

˜
c|2−4(1

4
|−

˜
b+

˜
c+

˜
d|2+ 1

4
|
˜
b−

˜
c+

˜
d|2+ 1

4
|
˜
b+

˜
c−

˜
d|2)

= |
˜
b|2 + |

˜
c|2 + |

˜
d|2 + (

˜
c−

˜
b) · (

˜
c−

˜
b) + (

˜
d−

˜
b) · (

˜
d−

˜
b) + (

˜
d−

˜
c) · (

˜
d−

˜
c)

−(−
˜
b+

˜
c+

˜
d) · (−

˜
b+

˜
c+

˜
d)− (

˜
b−

˜
c+

˜
d) · (

˜
b−

˜
c+

˜
d)− (

˜
b+

˜
c−

˜
d) · (

˜
b+

˜
c−

˜
d)

= |
˜
b|2 + |

˜
c|2 + |

˜
d|2 + 2|

˜
b|2 + 2|

˜
c|2 + 2|

˜
d|2 − 2

˜
b ·

˜
c− 2

˜
b ·

˜
d− 2

˜
c ·

˜
d

−3|
˜
b|2 − 3|

˜
c|2 − 3|

˜
d|2 +2

˜
b ·
˜
c+2

˜
b ·
˜
d− 2

˜
c ·
˜
d+2

˜
b ·
˜
c− 2

˜
b ·
˜
d+2

˜
c ·
˜
d− 2

˜
b ·
˜
c+2

˜
b ·
˜
d+2

˜
c ·
˜
d

= 0 ∴ |
−→
AB|2 + |

−→
AC|2 + |

−−→
AD|2 + |

−−→
BC|2 + |

−−→
BD|2 + |

−−→
CD|2 = 4(|

−→
LP |2 + |

−−→
MQ|2 + |

−−→
NR|2)

15bii. (Alternative solution 1)

Nathan Altshiller-Court

The sum of the squares of two pairs of opposite
edges of a tetrahedron is equal to the sum of the
squares of the remaining two opposite edges
increased by four times the square of the bimedian
relative to these last edges.

Altshiller-Court, N. Modern Pure Solid
Geometry. New York: The Macmillan Company
1935, page 56.

As a corollary, the sum of the squares of the edges
of a tetrahedron is equal to four times the sum of
the squares of its bimedians.



15bii. (Alternative solution 2)

Apollonius of Perga

By Apollonius’ Theorem in △BMD, 2MQ2 = BM2 +DM2 − 2BQ2

in △ABC, 2BM2 = AB2 +BC2 − 2AM2

and in △ADC, 2DM2 = AD2+CD2− 2AM2 and as BQ = 1
2
BD and AM = 1

2
AC we

now have

4MQ2 = 2BM2 + 2DM2 −BD2

= AB2 +BC2 − 1
2
AC2 + AD2 + CD2 − 1

2
AC2 −BD2

= AB2 +BC2 + CD2 + AD2 − AC2 −BD2

Likewise 4LP 2 = AC2 +BC2 +BD2 + AD2 − AB2 − CD2

and 4NR2 = AC2 +CD2 +BD2 +AB2 −AD2 −BC2 and adding these we now have

4(LP 2 +MQ2 +NR2) = AB2 + AC2 + AD2 +BC2 +BD2 + CD2

(modified from The American Mathematical Monthly, Vol. 25 Issue 3, page 122 (1918)
Problem Section, Problem 522)

Note there is a vector method proof of Apollonius’ Theorem in Cambridge Maths
Extension 1 Year 12 Chapter 8 Review Exercise Q14 page 427 and an non-vector proof
in https://en.wikipedia.org/wiki/Apollonius’s theorem

https://en.wikipedia.org/wiki/Apollonius's_theorem


15bii. (Alternative solution 3)

Alessandro Fonda

This uses a generalisation found in 2013.

First redefine the term bimedian for n points as the segment joining the midpoint of
one segment to the barycentre of the remaining n − 2 points. Then the sum of the
squares of the n(n−1)

2
bimedians is equal to n

4n−8
times the sum of the squares of all

segments joining the n points.

In the case n = 4, the six bimedians coincide two by two. This explains why, in this
case, we now have one half of the sum of the squares of its edges, instead of one fourth.

Hence |
−→
AB|2 + |

−→
AC|2 + |

−−→
AD|2 + |

−−→
BC|2 + |

−−→
BD|2 + |

−−→
CD|2 = 4(|

−→
LP |2 + |

−−→
MQ|2 + |

−−→
NR|2)

Fonda, A., On a Geometrical Formula Involving Medians and Bimedians, Mathematics
Magazine, Vol. 86, No. 5 (December 2013), pp. 351-357

15c. x =
√
9− t2 cos(πt), y = −

√
9− t2 sin(πt), z = t with −3 ≤ t ≤ 3 gives the

equation of the curve C

C is on the sphere because
(
√
9− t2 cos(πt))2 + (−

√
9− t2 sin(πt))2 + t2

= (9− t2)(cos2(πt) + sin2(πt)) + t2

= 9− t2 + t2

= 32

Which of x, y has +/− and which has
sin / cos determines the shape of C
and the one given affords the one in
this desmos picture which concurs
with the one in the question.



Also angular frequency of π gives the correct number of turns.

16ai. w3− 1 = e2iπ − 1 = 1− 1 = 0 = (w− 1)(1+w+w2) and w ̸= 1 ∴ 1+w+w2 = 0

16aii. Rotate b− c anticlockwise by 2π
3
⇒ (b− c)w = c− a

∴ bw − cw − c+ a = a+ bw − c(1 + w) = 0
From 16ai, 1 + w = −w2 ∴ a+ bw − c(−w2) = 0 ∴ a+ bw + cw2 = 0

16aiii. Either a+ bw+ cw2 = 0 or a+ bw2+ cw = 0 ∴ (a+ bw+ cw2)(a+ bw2+ cw) = 0

From 16ai, w3 = 1 and w + w2 = −1

∴ a2 + abw2 + acw + bwa+ b2w3 + bcw2 + cw2a+ cbw4 + c2w3

= a2 + b2 + c2 + ab(w + w2) + bc(w + w2) + ca(w + w2)
= a2 + b2 + c2 + ab(−1) + bc(−1) + ca(−1)
= 0
∴ a2 + b2 + c2 = ab+ bc+ ca

16bi. If y = f(x) = x − lnx then f ′(x) = 1 − 1
x
= 1 − x−1 = 0 for stationary points

∴ x = 1, y = 1 and f ′′(x) = x−2 so f ′′(1) = 1 > 0. Furthermore f ′′(x) > 0 ∀x > 0.

Hence (1, 1) is a global minimum turning point and so for all x > 0, f(x) ≥ 1 > 0 ∴
x > lnx for all x > 0.

16bii. From 16bi, k > ln k ∀k ∈ Z+ ∴
∑n

k=1 k >
∑n

k=1 ln k ∴ n(n+1)
2

> ln
∏n

k=1 k = lnn!

Hence n2 + n > 2 lnn! = ln((n!)2).

As ex is a strictly monotonically increasing function, en
2+n > (n!)2

16c. x, y ∈ R, z, w ∈ C, θ = Arg( z
w
) = −Arg(w

z
), |z| = |w| = | z

w
| = |w

z
| = 1, π

2
< θ < π

⇒ xz+yw
z

= x+ y · w
z
= x+ y(cos(−θ) + i sin(−θ)) = x+ y cos θ − iy sin θ

and so with π
2
< Arg(xz+yw

z
) < π,−y sin θ > 0 and x+ y cos θ < 0

So with −1 < cos θ < 0 < sin θ < 1 we have y < 0 and x < −y cos θ < 0 and hence
−x sec θ < y < 0. Alternatively, since cos θ = ℜ( z

w
),− x

ℜ( z
w
)
< y < 0

If m = − sec θ then m > 1 and the region satisfied by (x, y) with the condition that
π
2
< Arg(xz+yw

z
) < π will be below the line y = 0 and above the line ℓ : y = mx



y

x

ℓ


