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The list below sets out the correct form of a phrase or expression
that has been misprinted. Misprints which do not obscure the sense

are not included in the list.

page line
28 =—2 of given magnitude «, the

® =6 J o w J = Ina

29 -2 operation .an of reflection

0 8 z.zdb;Ja=<72L,,ab
0 10 0 g (*ab <7

v u g4 =Js e =f72(né‘L:ab) = .2 |+ ab

= -1
I s = ddD
30 =12 Proof of relation in this line
A =g, D dpdd =47 -4
4 bvda d dpdd) T d
%Aaébéc : ng : cz5’cdb£a
Z}TSO =756 Better written as hla and Heh and H'e daﬂ é H'; h
Conversely, H' = gj‘ai.{ = HH'] a

3-6 These are statements about Operators. The form in which the theorems

have to be proved is
=L
1. D Dy P P for all P

and the figure for the pzoof is R

The essence of the proof is
AB // PG and BC // QR and AC // PQ and AP // BQ = AP // CR




For 3. the figure is
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41 -12 the transformation from (X,Y) to (Xi ') is

-10,-9 sc that, if h#0

p=0 and s=0 and h #0 %q=0 and r =0
h#0
k#0 i

bb'z2 - (bc + b'c' +h2)yz+cc'y2=

be +b'c' +h2 =0

1

Always singular if and only if b'=¢" =0

the element in position 12 on the matrix T T e

‘\a corresponds to p | cosg - sind
sing coso
s, 1,1 for &,J,&

g: reflection in an altitude through the point in the plane originally
occupied by the vertex R.
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Acd after iine -7 the L0lidwing Cxpianatich

To effect these reductions, replace successive pairs of
reflections by pairs, the axes of the first members of which
pass through J. {The term "axis" of reflection has not so
far been used, but can be intrcduced earlier with advantage.)
Let al, eovy & be the axes of reflections g ...,an .

* 7
Find a;', az' (axes of z’fl' 5 7&2 ) such that

A;A; = Qf‘zﬁjl and a; passes through .O.

(There are two cases to discuss a; # a, and & // a ).

/
Next replace 243 ,é(?’ by 5&" ,e'f; with a; through 0 and
so on. : ¢

"

al.
a; 0

a“‘L

&

In this way sﬂ ;4 iﬁxj is replaced by
nvn-1 21
/ /

" i . /
A n‘jn-l dzl‘d; , with the axes &) , 82 , +«+» @ o 4

all passing through 0, but a”n not in general doing so.

then 4 ... 4'4'= (4 if n-1 is odd
n-J 21 ¢,
Aq zﬁ)or»)‘ if n-1 1s even,

(for axes a , or a; and 2 “through O completely defined
by a\.’ az, ey an )
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41, TEEORETICAL ARITHMETIC

(a) The Integers or Whole Numkers

Review of the fundamental properties of the set of integers.
Factorisaticn and divisibility. Primes and composite numbers.
The division transformation. Highest common factor. Euclid's

7 aigorithm and deductions from it. The unique factorisation into
primes.

# (b) The Rational Numbers

Review of the origin of the rational numbers. Comparison of

the set of rationals with the set of integers. Decimal
representation of rationals,

(c) The Real Numbers

Set of all decimals as an ordered set in which arithmetical
operations may be defined so as to give this set the same
essential structure as that of the set of rationals. Comparison
of the set of real numbers with the set of rational numbers.
The monotonic principle of convergence. The definition of a
for 2> 0,

Sequences and Series

Notion of a limit in connection with sequences. Convergence of
series. Compariscn test for absolute convergence. Simple
examples of conditionally convergent series. Demonstration
of the limits:

. n
for oca<l, pfo, nPa"55 as n> oo
.n

for x.>1 , o7 >oasn—> o

Complex Numbers

Origin cof the idea in connection with the solution of quadratc
equations. E‘cé)loration of the possibilities by introduction of tne
imaginary i, -1, and recognition of the formal theory as a
calculus of ordered pairs of real numbers. Modulus, argument,

- conjugate. Ceometric representation of addition and multiplication
of complex numbers in the Argand diagram. The relations

|

' |z
) Ilzlzz'=121,.l 2

arg 2122 = argz1 + arg22




ALGEBRA

(a)

(b)

(c)

CALCULUS,

Polynomials

The general notion. The "indeterminate', coefficients, degree,
The influence of the coefficient set on the structure of the theOry_ :
Addition and multiplication of polynomials. Factorisation and
divisibility. Prime and composite polynomials. Highest commop
factor. The division transformation. Euclid's algorithm and
deductions from it. The unique factorisation into primes.

Polynomials as Functions

Polynomial equations. Roots. The remainder and factor
theorems. Relation between the number of roots and the degree,
The identity of two polynomials. Relations between the roots
and the coefficients in case of a polynomial which is completely
reducible to linear factors.

Taylor's Theorem for Polynomials

The binomial theorem for a positive integer index. The
derived polynomial Df = f'. Taylor's Theorem. Multiple roots,

Rational Functions

Partial Fractions.

(a)

(b)

(c)

The Function Concept

The notion of related variables. Dependent and independent
variables. Functions as mappings or correspondences. The
functional notation. Graphical representation. Inverse functions.

The Continuous Function of a Real Variable

Meaning of continuity at a point and in an interval, Statement

of the fundamental properties without proof.

Tangents to Curves

Calculation of the gradient as a limit.
Differentiation. The derived function. The significance of the
sign of the derived function. Maxima and Minima. Rolle's
theorem. The mean value theorem., Differentiation of
combinations of functions and of composite functions.
Differentiation of rational functions and of simple irrational

Gradient or slope.

functions. The relation
dy dx |,
dx ° dy

in connection with inverse functions. Geometric meaning on
the graph. Calculation of derivative of functions defined
implicitly in cases which do not involve partial differentiation.
Second derivatives, inflexions and curve tracing.
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(d)

(e)

(£)

(g)

The Problem of Areas

Figures bounded by curved lines. The definite integral
defined as the limit of a sum. Formal properties of the
definite integral. Indefinite integrals and the fundamental
theorem of the calculus. Calculation of areas and volumes.

The Exponential and Logarithmic Functions

The theory of these functions should be derived from one or
other of the differential equations

él = gl = .l.

ax Y T ax x

The definition of e. Derivation of the exponential and
logarithmic series. Calculation of e and of 1oge2.

Arcs of Curves; the Trigonometric Functions

Calculation of length of arc. Length of circular arc. Measure
of an angle. The radian. Definition of 7 . The trigonometric
or circular functions defined by reference to the unit circle.
Graphs of these functions. Differentiation of the trigonometric
functions. The addition formulae and allied formulae.

Trigonometric equations. Series for sin x and cos x. The
inverse circular functions and their "principal" values.
Differentiation of sin “X, cos lx and tan”*x. Series for tan”1x.

Calculation of 77".

Integration

The table of standard integrals. Indefinite integration.
Integration by parts, and use of change of variable.

Integration of simple rational functions and of simple irrational
functions involving the square root of a quadratic.

PLANE GEOMETRY. GEOMETRIC ALGEBRA. MATRICES.

GEOMETRY IN THREE DIMENSIONS.

(a)

(b)

Elementary Plane Analytical Geometry

Cartesian co- ordinates. Distance formula, section formula.
Forms of equation of the straight line including parametric
forms. Distance of a point from a line. Point of intersection
of two lines. Angle between two lines.

3 x 3 determinants. Areaof a triangle with given vertices.
Condition of concurrence of three lines.

Simple geometry of the parabola.

Linear Transformations in the Plane. Introduction
of Matrix Algebra.

Rotations, reflections, displacements as geometric operators.
Groups of operators. Brief treatment of groups in general.
Cartesian form of rotations etc. 2 x 2 matrices as operators.

2 x 2 matrices as complex numbers.



General form and properties of 2 x 2 matrices. Formal rules
for combination of 2 x 2 matrices under multiplication and addition,
Singular 2 x 2 matrices and divisors of the zero matrix.

Re-interpretation of matrix relations as changes of co-ordinates.
Combination of change of co-ordinates with linear transformations;

similariic

wracierisio¢ runciion of 2 x.2 matrix; e¢lgenvalues and

'®)

eligenvectors.
Cayley-Hamilton theorem. Invariance under similarity.

Application to the reduction of the general quadratic form in

two variables (conic). Change or origin, significance A= 0,

C = 0. Lengths and directions of principal axes from eigenvalues
and eigenvectors.

Relation of curves represented by vanishing of a quadratic form
to conics defined by focus-directrix property.

(c) Analvtical Geometry in Three Dimensions

(The content of this is largely included in the IIF course and may
e presented either in traditional form or by introducing 3 x 3

matrices and expressing relations in matrix form.)

Planes and lines in 3 dimensions. Angle between plane and line.
The normal to a plane. Skew lines and the angle between them.

Cartesian co-ordinates in 3 dimensions. Distance between two
points. Section formulae. Direction angles and direction cosines.
Determination of the angle between two lines given their direction
cosines. Condition for perpendicularity.

The general equation of a plane and the perpendicular form.
Conditions for two planes to be parallel and perpendicular.
Distance from a point to a plane. Intersection of three planes
and relation to algebraic solution of three linear equations.

The equation of a sphere and the general notion of the equation
of a surface. Three dimensional interpretation of relations
which involve only two co-ordinates.

ELEMENTARY DYNAMICS OF A PARTICLE.

Rectilinear motion of a particle described by a functional relation x = £(t).
Velocity and acceleration as differential coefficients. Kinematical
formulae for uniformly accelerated motion. Newton's Laws of motion -
first and second laws. Differential equations of motion in one dimension.
Momentuin, work and energy. Kinetic and potential energy. Eauatio:

of energy, Resisted motion, terminal velocity. Simple harmonic motion,
Projectiles, DMotion in two dimensions under gravity.



THEORY OF PROBABILITY.

(a)  Statistical regularity. Random experiments. Relative
freguency as an empirical measure of prebability.

{p) Random experimenis with a finite number of possinie

outcomes. Simple events, composile evenis. Prohbiligw

of an event. Mutually exclusire ¢vents; the opposite
(complementary) event. The algebru of evenis. Theorem

of total probability.

(c) Two stage random experiments. Independent events.
The product rule.

(d) Systematic enumeration in a finite sample

o

2 B el 1
space leading to the definitions of Pr and C

(e} Binomial probabilities ard the (555 (o petete

distribution.
3 o
it (f) The notion of a random variab lstrated mainly in
? connection with the binomial d bhution. The expected
2 value of a random variable. The expected value of the

binomial variable.
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BOARD OF SENIOR SCHOOL STUDIES

MATHEMA TICS

First Level Syllabus

NOTES

The First Level Syllabus is arranged as six main themes:

Le Theoretical Arithmetic
2, Algebra

3. Calculus

4, Geometric Algebra

d. Elementary Dynamics
6. Theory of probability

The first four themes are intended to be developed side by side while
the fifth theme can be added as soon as the Calculus is strong enough,
and the sixth may be treated at almost any time,
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First Level Notes

THEORETICAL ARITHMETIC

(a)
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The Integers or Whole Numbers

The fundamental properties will be known from the work of the
first four years, but may be summarily reviewed, The
essential facts are:

(i)

(ii)

(iii)

the set of integers is ordered,

two binary operations, addition and multiplication are
defined within the set and these obey 'algebraic’ laws which
have been fully discussed in earlier work,

there are relations between the properties (i) and (ii)
and these may be called the "laws for inequalities', There
are two principal relations and these are not independent.

They are:

a, b, c being integers, and a< b
thena +c¢c < b + c;

and

a, b, c being integers, a < b and
¢ >0 then ac < bc.

These are the basic facts for work with inequalities,
Divisibility among the integers is defined as follows:

Givena, b 7‘£ o, if there is an integer C such that a = bc
we say "' b divides a' and indicate this by b | a.

"s does not divide a' is indicated by b { a. We say
also "b is a factor of a'; and also c is a factor of a.

The two theorems.

b|a, &bla'—>bla (@ +a'),

and

bla, &clb—c|a,

are consequences of the algebraic laws, For much of

the discussion it is convenient to restrict attention to the
positive integers and their positive factors, If we do this
the factorisation a = bc implies 1£b%a and 1£ ¢ £a.

So any positive a can have only a finite number of positive
factors. If a > 1 it has the two factors 1 and a; and there
are numbers a which have no other factors.

Such numbers are prime; and numbers which are not

prime are called composite. A composite number a
(>1) has a divisor d with 1 < d < a, It follows that any

number >1, if not prime, can be expressed as a product
of a finite number of prime factors.
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If((‘p1 2 slile pn }is a finite set of primes and we form the

number N = 1 + PiBy e B then we see P1 + NEfornf

Pl' N we infer Py ‘ 1, and so 1 =ap;>a 2 1, 1> 1.
oimilariv p: A N 1=1, ..., n. Thus N has a Drime
divizo. »,2 N, which must be different from each of the p:

ile we infer that there are infinitely many primes.
2« > 1 is composite we may write a = be with b > ¢ > 1
Hencea =be > ¢ . Thus a has a divisor ¢ whose sguare
does not exceed a, In par’ticu})ar anry composite a will
have a prime divisor p with P° £ a. Totest whether a
given number a > 1 is prime it is Sufficien,; to test it for
divisibility by all the primes p for which p~#% a,
Given b > o, there is a unique largest integer g such that
b = a, Thengh +b=(q +1)b>a, I we set a = gb +r
then r is uniquely determined and o < r<b, We cail g the
"quotient’ and r the remainder when a is divided by b. The
relation,

a = gb +r, 0<rcgb

is called the division transformation,

The highest cocmmon factor of two integers a, b is the
largest positive number h such that h l a, h ' be
Ifh= 1we saya, bare relatively prime, If now
=4gb +r, 0 £ r<b weinferh P

O]

. g3 . a
Given two positive integers “0 =~ 1 we can form the

i o d ST I Sl etV tdu o Db aa d'i

Euclid algorithm
a = 2 < 1‘
0 %3 tEg. 0 = a,¢ay q
i
= a < 3
&y o2y 1234, 0 axa, 1
= = =
fr-2 T 9 el % e drlfp
ar-l - qrar

The remainders decrease and the process ends after r steps
when the Yast remainder 1s zero, Then, by a simple
argument, a,. =h, the H,C,F, of ag, aj.

Now working "up" the algorithm we find

h=a =A a AN
r 0O o 11

where A, and A, are integers, Changing the notation we
see that if a, b are any positive integers there are integers

8.




(b)

Matnematics
First Level Notes

A, B such that
Aa +Bb=h =H,C,F, of a, b.

In this statement the restriction to positive a, b is obviously
unnecessary. When a, b are relatively prime, h =1 and
we have the relation

Aa +Bb =1

Conversely this relation implies that a, b are relatively
prime, If now a | bec we have

Aac + Bbc = c

but a divides both the terms on the left, soa| c. If a
divides a product and is prime to one factor then it divides
the other. Thus if the prime p divides the product of
primes pj... Ppthen we must have p = pj for some it

For if not we derive successively

ees » P|P

|
p| P, «eo Ps P|PgeeeP »

2
and this is a contradiction, The fundamental theorem on the
uniqueness of the prime factorisation of any number a now

follows easily.

The Rational Numbers

The fundamental properties concerning the order and the
arithmetic operations in the set of rational number will be
known, They are precisely as detailed above for the set of
integers with one additional property, namely, given any
rational number a # 0 there is one and only one rational
number b such that ab =1, Thisbis denoted by a'l.

Given any two rationals a, b % 0 there is just one rational

¢ such that a = be, Thus if we take ¢ = b~la then be = b(b~1a)
= 1a = a. One consequence of this fact is that there is no
theory of divisibility among the set of rationals in any way
similar to what we have considered for the integers.

Between any two rationals there is another rational and hence
infinitely many rationals. Thusifa< b we have

92 =a +ta<a + b<b +b =2b,

. ath
* o a< 2 (b.

It should be remembered that the rationals are constructed
from the integers as ordered pairs of integers on which the
operations of addition and multiplication are defined. Mathe-
maticians. . do this formally, but it should be noted that
school children do exactly the same thing, only less
formally.,



(c)
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Thus for instance the 'fraction' 2/3 is literally an ordered
pair of integers written vertically and separated by a bar,
instead of horizontally and separated by a comma - and 2/3
is identified with 4/6; etc. Anyone who knows the formal
construction will see that it is not much ahead of the
school construction, and that the biggest difference is

in the mental attitude to the process.

The decimal representation of the rational numbers is also
familiar since primary school, This should be reviewed
noting especially that the decimals obtained either terminate

or recur. In the conversion of rationals to their decimal
representation such an infinite decimal as

2.202002000200002 ...
which neither terminates nor recurs does not arise,

The Real Numbers

The need for a further extension of the set of numbers beyond
the rationals may be illustrated by the simplest arithmetic
problems, We may seek, among the rationals, a number x
which satisfies any of the equations such as

x2 =2,x2 =3,x3=4.
But we will seek in vain! It is easy to prove that a rational
number x does not satisfy any one of these equations. In
earlier work we have been accustomed to write, as solutions
of these equations, x =+2, x = /3, X =3/4, If there is
any sense in this formalism we have not yet explained it.
Our purpose should be to construct, if possible, a nurnber
system which will contain ali the numbers (i.e., the raticnals)
that we have already, and others besides which may satisfy
these equations. This extended number system should have
the essential properties of the system of rationals as we have
explained them above.

There are in fact several extensions of the set of rationals
which have been studied and which are of great interest.

If, for instance, we were only concerned to have a number
system in which all polynomial equations have solutions then
we would be satisfied to introduce the so-called "algebraic"
numbers. If, however, we wish to establish the customary

-limit processes involved in, say, the calculus we require

a much wider extension,

The germ of the appropriate extension has already presented
itself in primary school work, in the decimal representation
used there. The real numbers may be introduced as the set
of all decimals - not merely those which terminate or recur.
It can be easily explained how this set is ordered; how
addition and multiplication is defined within the set; and how,
when these definitions are properly given, (and the proper
way is 'nearly obvious') the set of real numbers has all

the properties (i), (ii), (iii) which we have picked out above

10.
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as the essential properties of the set of rationals,

This is precisely our justification for calling the set of
decimals, with the structure we have imposed on it, a

set of numbers; and the word real is used merely as a name.
The numbers of this set which do not terminate oOr recur are
the irrational numbers.

But the set of real numbers, now introduced, has further
important properties which are not possessed by the set of )
rationals; naturally it is these new properties which gives

this set of reals their importance. A fundamental property

of this kind (from which all the other important ones follow)

is what we call the monotonic principle of convergence,

While this is easy enough to prove, such a formal proof is

not required at this stage. What _ig_required is that the
principle should be accurately stated, discussed and explained
sufficiently so that pupils feel reasonably convinced of its
accuracy, and so that they can use it and argue from it
accurately. if necessary the principle could be set up as

a postulate, to be accepted for the present, and to be

examined more fully at a later stage. There would be no
violation of logic in this procedure. It is easily shown by
examples that the principle does not hold within the set of
rational numbers.,

Now we can prove that each of the equations x2 =2, etc.,
quoted above has a solution among the real numbers; the
solutions are of course irrational and as a matter of notation
they are denoted by J2, /3 etc. By exactly the same argument
we can now show that any equation like

x3 =P

where a >0 is real and p, g are integers has exactly one
positive solution, This is denoted by aP/d, Here, and for
the first time, we have a satisfactory definition of the meaning
of fractional exponents. The usual "Maws of indices'' for such
exponents now follow by the usual arguments. For example
for positive integers p, Q, y, &, if

, x=ap/q, y=ar/5

; we have ‘}
:f (xy)qs - xds 5 qs_ ,ps T4 - PS +rq i
% So xy - o (P8 +rq)/qgs _ ,p/a tr/s

i
: Hence ap/q. a r/s= ap/q +r/s

e ————————T

(d) Sequences and Series - These considerations lead naturally
fo the discussion of sequences and series, to the introduction
of the notion of the limit of a sequence, and to the convergence

of series.

RV R,

11,
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‘The particular limits
5 p_n
when p >0, O<a<i, n a —0 as n——-» oco;
x
when x >1, ot >0 asn —seoo
should be established,

Here are simple proofs, foro < b < 10

n
n <n ( ) n(1-b)

: =1l £p,
Raise to power 1 + pand seta = b We get

nPaP & 111- (Tb—b-) : +p—;0 as n—»o00

Forn > r+1>2x,

ner 2nxn
1 " =

n:. > n(n-1),,, (r+1) > (2x) BT
Xk 2x) T 0Dasn _3 oe

n) . 2n
The compariscn test for convergence of a series of positive
terins follows immediately from the monotonic principle,
The convergence of the infinite G, P, and the seriesy 1 should
be established, np

Absolute convergence of an infinite series should be defined
and it should be shown that absolute convergence implies
convergence, The possibility of convergence without
absolute convergence should be iliustrated by the example

1 1
+_- R e e 00000

3 4

(ST

1 -

Complex Numbers, There remain simple algebraic questions
which have no answer within the set of real numbe s. There @
is no real number x which satisfies the equation x“+ 1 =0,
We may wish to extend the number system further so that »
in the new set of numbers equations of this kind have solutions.
Here also the extended number system would be required to
retain as far as possible the essential properties of the
earlier number systems,

Assuming that such an extended system is possible we
denote by i a solution of ¥ + 1= 0. So i® = -1, and we
may then solve equations like x“ - 2x +2 = 0 to find x = 3
1 +iorx=1-i, This leads to consideration of expressions =
of the form a +1i b where a, b are real numbers,

If we begin again with these elements and define addition
and multiplication formally we find a system which has all
the algebraic properties of the earlier number system, But
the system is not ordered, It is easy to explain that we are
effectively operating with.ordered pairs of real numbers
according to rules which may be formally stated,
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ALGEBRA

In a preliminary discussion it may be worth while to explain that in the
algebra associated with number systems it is the 'algebraic'' properties
of the numbers which is of the greatest importance. We noted that the
rationals, reals, and complex numbers all had the same algebraic
properties while the set of integers have most of the same properties.

" It may now seem useful to introduce the notion of a field in the algebraic

f  sense and possibly also the notion of an integral domain ,

(a)

Polynomials

Polynomials may be formed over various sets --- and the sets
usually have some kind of algebraic structure. For the various
useful structures the theories of polynomials have much in common
but they differ in some important points of detail. It is not

feasible to ask beginners to absorb all the useful theories at the
same time so we consider here only sets which have the algebraic
structure of a field, More definitely the beginner may contemplate
one or other of the set of rationals, the set of reals, or the set of
complex numbers.,

Ifag, 8, «ss » ap @Teany numbers in one of these fields the

expression
; + n
ag tapx *... ta X

is called a "polynomial in x'" over the field. In the most abstract
approach the letter x has no meaning and the polynomial is a purely
formal expression - merely a device for studying ordered finite
subsets {ag, «+« » a,} of numbers, Hereag, ..., a,are called

the coefficients of the polynomial, x is called the '"intermediate'’,
and if ap ¥ 0 the polynomial is said to have degree n, We impose a
structure on the set of polynomials by defining addition and
multiplication formally in a way which need not be specified here,
The usual algebraic laws for addition and multiplication apply.
Subtraction is possible but division is not always possible, The
poiynomials obey the same set of algebraic laws as do the integers
technically polynornials over a field form an integral domain. The
zero polynomial, a . = 0 all r, has no degree but apart from this
the degree of a product is equal to the sum of degrees of the factors.
It follows that the product of non-zero polynomials is not zero.

Ideas like divisibility and factorisation may be applied to the set

of polynomials just as to tne set of integers - and the theory is
constructed in much the same way. Given A = A(x), B = B{x) (= 0) any
two polynomials in x, if there is a polynomial C{x) such that A = BC
we say "B divides A" and write B | A.

We say also B is a factor of A; and of course if C % 0, Cisa
factor of A. The theorems

B‘A % B|Aa=—sB|(a+a"
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BlA &Cc|B==cC|a
follow as in arithmetic,
If A =BC and if deg, B<deg. A & deg. C, < deg., A

then B, C are "proper'' factors of A, and A is composite or
reducible, If A has no proper factors we call A an irreducible
polynomial or a prime polynomial, Whether or not a given
polynomial is reducible depends very materially on the field over
which the set of polgénomials is constructed, For example it is

easy to prove that x“ - 2 is reducible when the underlying field
is the set of real numbers:

X° - 2 =z =v3) % + 3

but it is irreducible when the underlying field is the set of rationals,
The proof is trivial and depends only on the fact that no rational
number has its square equal to 2. So x2 + 1 is irreducible over the
reals but is reducible over the field of complex numbers,

A polynomial of degree 1 is always prime, The polynomial
x2 =3x +2 = (x-1) (x-2) is reducible overany field, but the polynomial,

f) &
¢ +x+1 ={x-w)(x - w2)

is reducible only over fields which contain the cube roots w, w2
of unity.

In general any polynomial of degree exceeding 1 over the complex
field is reducible, and this is a statement equivalent to what used to be
called the-fundamental theorem of algebra. The theorem remains a
fundamental cne in mathematics though it is not now regarded as a
theorem of algebra,

A polynomial, if not prime, can be expressed as a product of primes,
The long division process of classical algebra can be used to '
establish the division transformation, Given two polyrnomials in X,
say A and B suppose that deg, A 2 deg, B > 0. We can find two
polyncmials q and r such that A = gB + r and either r = 0 or deg. r<3
deg. B. Suchq, r are uniquely determined, -

(et [T sl Whgei T

The H.C.F, of two polynomials A and B is a polynomial H of
highest degree with highest coefficient 1 such that H[A and H|B.
Euclid's algorithm for the H,C, F. is constructed now almost
exactly as in the case of the set of integers and we make similar
deductions from it, Thus if A, B are given polynomials and H is
their H,C, F. there are polynomials P, Q such that

PA +QB = H
B =1, we say A, Bare relatively prime and

PA+QB =1
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Conversely, a relation of this kind implies that A, B are relatively
prime, Again, also proved as before, if A, B are relatively prime,

A | Bc=mAlC
Finally we may show that the factorisation of a polynomial into
irreducible factors is essentially unique, i,e., apart from the

introduction of 'constant'' factors.

Polynomials as functions

Given a polynomial in the indeterminate x over a field F say

PR} 2a, Tax+ 2"
if we replace x by b, an element of F, we get

a +a.b+,..+t a_bl
(o) I} n

This is an element of F; it is denoted by P(b)

To each element b in F the polynomial determines in this way a
definite element of F, i.e., it specifies a function on F into F,
Further the definitions of addition and multiplication of polynomials
have been such that the polynomial relations

P(x) + Q(x) = R(x), P(x)Qx) =3(x)
imply the relations
P(b) + Q(b) = R(b), P(b) Qb) =S(b)

In consequence any relation between polynomials derived by the

use of these operations yields a ‘corresponding relation between the
associated functions. Expressed briefly this means that in any
relation between polynomials over F we may substitute any element
of the set F for the indeterminate x. It is this principle of
substitution which is so important; if it were not true any abstract
theory of polyncmials would be of very much less use than it is.

Consider for instance the division transformation when B = x - 3,
is of the first degree, Then

A =qg(x-a) +r

and either r = 0, or it is a polynomial of degree 0; we may say r is
an element of the field, Substituting x = b we get

A{b) = q(b). (b-a) *r,
a relation which holds for every b in F.

In particular, taking b = a we get A(@) = r.

So, in this division the remainder r is A(a), This is the so-called

"remainder theorem'., When A(a) =0, r = 0 and we get
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A(x) = gix). (x-a)
SO
(x -a) A(x)

in the sense of polynomial division., Of course, the converse ¥
statement holds also., This is the 'factor theorem',

Then also a is called a root of the polynomial A(x), We see that a
polynomial over F which is irreducible over F and of degree > 1 hag *
no rocts in F, . -

2ER 2 5ol b

Again, if a polynomial A(x) of degree n has n roots al, «e., ap ¥

we find the factorisation
Alx) =alx -aj) ... (x - anp)
Hence for b in F,

A(b)

a (b_al) L ) (b - an)
This means that for b #a;, each i, A(b) 4 0,

Hence a polynomi:al of degree n cannot have more than n roots, Now
we may show that two different polynomials A(x) and B(x) cannot
specify the same function in F. For then the polynomial

A(x) - B(x)

has a degreen > 0, Thus A(b) - B(b) _TL 0 except for at most n k3
values of b, If F contains more than n elements then A(b) and B(b) 3
are not the same functions on F,

If A(x) is completely reducible to a product of n linear factors, and
if it has highest coefficient 1 we have

Alx) = (x -aj7) ... (x = 8.}

The roots of A(x) are ay, ... , ap; and the coefficients of A(x)
are

- ; -1)n
1, Zaio t Zaiajo--':(l) a, "'an
Of course if a polynomial is not completely reducible there can be
no sense in speaking of a reiation between its roots and its

coefficients,

(¢) Taylor's Theorem for Polynomials

The binomial expansion
(x +a) = xn + ruv:n-la+,,,+an

is elementary, If f(x) is a polynomial

18
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f=1fx) =ag +ajx t... + anxn

the derived polynomial f' = Df is defined quite formally by

Df =a; *+ 2a9 X+ ... +nanxn'1

Then by simple direct verification for any two polynomials f, g
D(f +g) =Df +Dg; D(fg) =(Df)g + fiDg)
In particular, with an obvious notation, if

f(x) = x* so

¢ =l 1" = n@-1)x2, ... etc.,

and the binomial expansion may be written

2 n
& ) L. < f(n)

X T (x)

flx +a) = f(x) +a f'(x) +

2 n o (n)
St ' @ E @ tE ()

By simple addition these formulae can be extended to an arbitrary
polynomial of degree n. By the "translation'' x — x - a we have

(x-a)" f(n)(

1 a)’
n.

f(x) =f(a) + (x-a)f'(@) +... *+

which is Taylor's theorem for polynomials (of degree n),

As we have seen if a is a root of f(x), (x-a) lf (x), f(a) = 0.

If in addition f'(@) = 0, ... , f(r)@) =0, and firtl)@@) # 0 we
commonly say a is a root of f(x) of multiplicity r. Then (x-a)rlf(x)
and (x-a)r*l } f(x). This follows immediately from Taylor's
theorem. The converse statement is easily proved.

Rational Functions, Partial Fractions

If P(x), Q(x) aretwo polynomials the expression

P(x)
Q(x)

is called a rational function. Of course properly speaking the word
function should not be used in a purely algebraical context since
the mathematical meaning of the word function is not involved at all
We shall continue with the old fashioned use. The sum of two
rational functions is defined by the formula

Sl . P1Q t BQy,
QI(X) QZ(X) Qg Q3
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and so is a rational function, The problem of 'partial fractions"

is to reverse this process, We state here only the main lemma, If f
is a polynomial, P, Q relatively prime polynomials and if deg, f<
deg. PQ then there is a unique separation into partial fractions

— A  + B_
PQ P Q
where deg, A < deg. P, deg.B <deg.Q.

Since P, Q are relatively prime we find A1 , B1 such that

BP + A Q-=1,

A

Multiply by f and set A = Af, B= Blf, then
BP + AQ =f

Hence

f

PQ

}
gl

H
Ol

By long division we may remove the 'integral parts' of A and B and

P Q

then these must cancel from considerations of degree,

3. CALCULUS

(a) The Functicn Concept

When two variable quantities (like pressure and volume of a gas,

or length and temperature of a metal bar, or distance travelled and
timetaken for a-moving particle) are related in such a way that the
value of one of them determines the value of the other we say that
they are functionally related, Usually the value of either variable may
be taken arbitrarily and then that of the other follows, or is
determined, by the first, We speak of the dependent and independent
variable, If the value of x determines that of y uniquely, we say y

is a functicn of x and write y = f(x). In mathematics we emphasise
especially the formal nature of the functional relation, but it is a
mistake to forget its practical origin, Formally we have simply a
correspondence between values of x and values of y.

If to each element x of a set X we have associated one and only one
element y of a set Y then this association or correspondsnce is a
function defined 'on X' (its domain) and having its range in Y, If

we like the associated elements may be written as pairs (x, y): so we
come to the modern definition of a function simply as a set of ordered
pairs in which any particular element of X occurs in only one of the
pairs, In this formulation the sets X, Y may be quite arbitrary sets
and not necessarily sets of numbers, It should be recognised that
this modern definition and the older forms mean the same thing,

In our calculus studies the sets X, Y are always sets of real numbers ~ 8
we are concerned with real functions of real variables, 3

10
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Continuous Functions

The notion of continuity should be explained simply but informally,
Assuming {(x) defined in an interval containing X, we define first
what is meant by continuity at x,. We say "f(x) is continuous at x,
if the values which f(x) takes for values of x near X, are nearly
equal to f{xp)'. A fuller discussion and a formal definition will be
found in the Second Level Notes,

Coentinuity throughout an interval is defined as continuity at each
point of the interval,

Graphs of continuous functions are continuous curves, and the
general properties of continuous functions should be explained by
reference to their graphs,

The fundamental properties are -

(i) if f{x) is continuous ina £ x £ b there is some point X, in
this interval such that f(x) £ f(x,) for all x in the interval,
This statement is described by saying that a function which
is continuous in a closed interval takes a greatest value
in the interval, The difference between closed and open
intervals should be emphasised,

(ii) if f(x) is continuous ina € x £ b and if f(a) f(b)4< 0 then
there is some point X, between a and b for which
2, =0,

No formal proofs cf these statements would be given,

Tangents to Curves

We may begin by considering continuous curves, being the graphs

of continuous functions y = f(x), defined in an intervala £x £ b,
Considered geometrically the first problem of the calculus is that
of defining what is meant by the tangent to a curve at a given point,
Let P be a point on the curve at which we wish to specify the tangent,
Take another point Q on the curve and consider the secant PQ. If,

as Q moves towards P along the curve, the secant PQ tends to a
limiting position or limiting line this line is the tangent at P to the
curve, A curve will have a tangent at the point P only if this
definition yields a result,

The definition is expressed in informal and geometric language and
it should be regarded as a mere meliminary, The use of the
description 'limiting line' almost begs the principal question, It
is therefore necessary to explain just how the definition is to be
understood.

Consider the slope or gradient of the secant PQ. If Q has co-
ordinates x, f(x) =y, and P has co-ordinates xo,f(xo) this slope is

1) - f (xg)

X-XO

g(x)
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To say that the secant PQ has a limiting position must be understood
to mean that the slope g(x) tends to a definite limit S, 53y, 28 X—X

If this is so then the line through P with the slope s is the tangent

to the curve at P, Then also we call s the slope of the curve at P,

The question then whether a given curve has a tangent at a particular
point P is the same as the question whether a given function has a
limit at a given point X5 —— the one question is merely a geometric
phrasing of the other. When the above limit s exists we say that the
function f(x) is "differentiable at Xo e X f(x) is differentiable
at each point of an interval then we say f(x) is differentiable
throughout the interval, In this case the differential coefficient s
is itself a function defined on the interval; its value at x is denoted
by f(x), and this is called the derived function, In contexts where
we write f(x) =y, we also write f'(x) = dy

dx

With the foundations properly laid the usual discussions of the
elementary text books can be quite rigorously interpreted, The usual
necessary conditions and sufficient conditions for local maxima and
minima may be derived, Rolle's theorem and the mean value theorem
should be explained geometrically - but it may be noted here that it
is quite easy to give rigorous proofs of these theorems using only

the properties of continuous functions already explained, An
important theoretical application of the mean value theorem is to
show that if f'(x) = 0 in a £ x £ b then f(x) is constant in that
interval, The converse, though important, is quite trivial and

would have been noted already,

The Definite Integral

This is, so to speak, the 'other half' of the calculus, The
theoretical problem is to define what is meant by the area of a region
which is bounded wholly or partly by curves, Here it is sufficient

to consider this for a region in the Cartesian plane bounded by a
continous curve y =f(x) >0, the x axis and ordinates at x = a and

x =b, (a<b); and to suppose that f(x) is an increasing function,
Divide the interval (a, b) into sub-intervals and form the sums =

s of areas of outer and inner rectangles, It is now easy to show that
if all the sub-intervals have length< § then

S - s< & [fb) - £ (a))

Also that, if there is an area A satisfying our intuitive requirements
then s <A <8,

Thus, by taking a suitably fine subdivision we see that either s

or S will be a close approximation to A: and the approximation can be
made as close as we wish by choice of the subdivision, Thus we
may say that the area A is the limit to which either s or S tends as
the subdivision is made finer and finer, This will do for the present,
but it may be noted that we have not done quite what we intended,
From a more sophisticated point of view we should first establish
that the limits of S or s in the sense described exist and then this
limit is taken as the definition of A, the area, We should then show
that this definition satisfies the requirements of geometrico -
physical intuition, But this more complete discussion belongs to a
later stage,
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Examples.of the direct calculation of areas as limits in cases of
the curves y = x2, e x3  should be given,

The sum S (or s) may be represented symbolically in the form

S =§% flx) A »

a

2 : . b
and the limit (which is the area) by.é f(x) dx, which is called
"the definite integral of f(x) over the interval (a, b)".

The extension of the idea of a definite integral to the usual cases
when f(x) is not monotonic over the whole interval or when f(x)
changes sign in the interval are formal and trivial. The fundamental
properties

@) P fe0dx +4° fx)dx =/ ¢ flx)dx

(i) if g, (x) £ f(x) £ gz(X)’ a

then/a'bgldxg_/a-bfd.x < /ab g, dx

are also obvious from the geometric picture. The statement (ii)
contains the mean value theorem (of the integral calculus),

We now prove easily (still under the assumption that f(x) is continuous)

d X -

= ‘/a' f(u) du = f(x)

which establishes the connection between differentiation and
integration (and so 'joins' the two halves of the subject); this is
one form of the fundamental theorem of the calculus. It leads to the
calculus rule for evaluating definite integrals. The power of this
calculus may now be impressed on students by showing how easily
we can calculate the areas under the curvesy = x“ andy = x°,
comparing this with the direct calculations already made,

Throughout ,the work should be illustrated as far as possible with
simple examples and the students should work practice exercises.,
All the points of theoretical statements are often first fully
understood only in connection with such exercises.

For example, the simplification of apparently complicated integrals
by the use of relations such as

a a
/o' f(x)dx = -/o' f(a - x) dx
and of the properties of odd and even functions could be demonstrated.

Simple exercises usually serve this purpose just as well as
complicated ones, but significant problems are not always simple
and it is necessary to acquire useful technique. When possible there
should be some intrinsically interesting and challenging problems,
The following development of the theory of the elementary trans-
cendental functions should serve to emphasise the power of the
calculus methods.
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Exponential and Logarithmic Functions

According to the principles established the area under the curve
¥y ¥ X' and the ordinates at 1 and x is

H(x) =‘/1'x - uMdu

|
]
|
|
3
|

which clearly holds for all x>1 and for all values of n, For

n# -1 we can evaluate this by the methcd of calculus., Forn= -1
the method fails; this is simply because we do not know a function
whose derived function is x-1,

But, withn= - 1

Hi{x) /1’X du | (1)
’ u

and, by the general result

dH = I

_d_x ; . (2)
Thus the integral formula itself defines a function whose derived
function is X, We may therefore decide to study the mroperties
of this function directly from this definition.
The first properties appear immediately:
H(1) = 0, H(x) is an increasing function of x,

Now, using the function of a function rule,
9 H(x) = l; from this H(ax) - H(x) = const.
X

Setting x = 1 we determine the constant and find H(ax) = H(x) + H(a).
Replacing x by b,

H(a) + H(b) = H(ab) (3)
This is a fundamental property of the function,
A quite similar discussion shows that

H(x¥) = k H(x) (4)

From (4), H(2®) = x H(2). This shows that H(2¥) — 0o as
X —» o0 ;-andequivalently H(x)— 00 as x-o0o0 Again from (3),
setiinga =x, b =1 we find H(x) = -H(1), and so H(x) = oo

x
as x —» 0, The function H(x) increases xmonotonically from - ©©
to + oo as x increases irom 0 tose, H{x) 2 0asx 2z 1, and the

gradient of H(x) continually decreases as x increases, The graph of
H(x) may now be drawn showing these features,

Since H(x) is continuous and increasing there is a unique value e
such that H(e) =1, If we write for a moment x = eY¥ then by (4)

H(x) = H(e¥) = y Hle) = y = log x
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by the usual definition of a logaritm. This logarithm, tp base e,
is called the natural logarithm of x, From this we have its
essential properties. i

X
- du d = 1
log x = = 4 (log _x) -
gx =/ W, 4 o -
Further, since VX £ x, forx > 1, we have

log x = X  du du 9
e ‘/1’ —L-1-<‘ 1 S < ﬂ,

and so

1ogx___;’0 as N — 0
X

The relations y = log X, X = eY are equivalent and so
e

d _ 4 1
d () = 94X = — =x =¢e
dy dy dy
dx
or, what is the same thing, d%{ (e¥*) = X,

Finally we may obtain the series expansions of e* and log (1 ¥x). A
simple derivation of the exponential series can be given by using the

following principle. Suppose V_ = vo(x) be (say) a positive function

defined over some range (O, X); and that o<vp(x) < K,

If we define a sequence vy (x), vz(x), v.. in (O, X) by

v =/x
n + 1 o vn dx

then we find, by induction, 0<V_ (¢ Kx" ¢ Kx?
n —_

n', 0!
Thus ¥ 0 as n—» co, Now take L ex.
= X -1 = - — =
Then vy e ¥ 1, 0¥V e i

Then by integration over (0, x) we get successively

Vl - V2 = X
2
v - ¥ = X
2 3 5T
= Db
Vn Vn+l 3{—‘
n.
By addition and transposition of terms
X r x v
e -Ll X Of .. T o = 'n31 —>0

as n—> co. This establishes the exponential series

eX =1 +x 4 ... t+ 2 +oues

n',

)
(9]
.
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We have supposed x > 0; but the proof is easily extended to the cage :

X < 0. By setting x =1 we easily comnnute e = 2,718282 ...
N
From the G, P, formula i
1 = 1 +x ., +x 0 4 xh “
1-x 1-x
we find by integration and then letting n—— oo §
= x2 n 3
'log(l-X)-X+_ +...+X coe B
9 —_— R =

= n x.

valid in -1 = x < 1,
(f)  Arcs of Curves I
Like areas, the length of arc of a curved line is a matter of »‘ _
definition. Given a curve y = f(x) consider the arc AB between N
X =aandx =b N
R

Select points A = P Py, ... , P, = Binorder on the curve and

Ol
form the sum of the lengths of the chords P., P,
= > 1 1

The limit of this sum as the division is made finer and finer, if ¥
it exists, is by definition the length of the arc AB, Under certain B
conditions, viz, f(x) has a continuous derivative, it is easy to e 2
show that the limit does exist and is represented by the definite E 3
integral,

1

‘/;b'[l + { 5 (x)}ZJ% dx =/;b[1 +Sd-xz) 2]5 a5

Thus if P, P' be any adjacent points in the above sum with co-
ordinate differences A X, A y then

9
PQ%= (ax? + (a2 and 4L = 1(x)

where x is a number between the abscissae of P, Q, This uses the
mean values theorem, So setting

; )
P = A S ey
we find
PQ =@ (x), o x.

ol I
1

hen for the above sum we have

% i E e X AX
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As the divisign is made finer and finer the sum on the right has
the limit / o (x) dx
a

by the definition of the integral. This is the result,

For the unit circle x“2 57 y2 =1, we find
X G + = 0
dy y o 2
1+ (X )2 =
dy 2
X

Hence the length of arc e between (1,0) and (x, y) in the first
quadrant is

- d
JogE

Now, by definition @is the angle subtended by this arc at the origin.
Also, by definition, the trigonometric functions cose and sine are

cos 8 =x, sin® =Y.
Then dy = _1_ = _1_ = x,
: G do 1
z dy X
d . e as
or - {sin 8) = cos O, So we have the definitions and the

differentiation of the trigonometric functions all in a few lines.
From these all the other properties are easily derived.

The series expansions for sin x and cos x may be found by the method
used for e*, Wée set

X
u = cos X, Bt = ,é, Un dx.
; Then as before a 0 as n —> o Now we find easily
l u + u =1 , u F = X
o 2 1 3
2 3
u + u = X u + u = X
2 4 2! 3 5 3T

etc. Alternating the signs, adding the first n rows, and then letting
n —s cowe have rigorously established the expansions for sin x and
cos X,

The elementary theory is completed with the definition of the
inverse circular functions, sin’lx, cos"lx, tan'lx; with the selection
of principal values and with their differentiation, Further details

need not be given here, Perhaps enough has been written to
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indicate the advantages of first establishing completely the
fundamental principles of the calculus and using these for the
development of the theory of the elementary functions from appropriate
definitions,

(g) Integration

We are now in a position to set up a table of standard elementary
indefinite integrals. Introduction of the methods of change of
variable and integration by parts facilitates the use of the calculus in
application, Naturally in a first course only simple examples would
be worked; it is far more important and of greater jnterest to teach
the essential principles of methods and applications.

PLANE GEOMETRY, GEOMETRIC ALGEBRA, MATRICES, GEOMETRY

IN THREE DIMENSIONS

(@)  Elementary Plane Analytical Geometry

(As in Second Level (2F), items 4 and 7 (e), (f). The theme at the
end of item 7 (f), should be developed further, )

Determinants etc,

This subject can be treated first here and in more detail at the end
of item 4 (b),

The two lines
a;x+ bly tc =0
agx + bzy te, =0

(assumed to be not parallel) meet in the point

=

=
-
<

-
i

(bec -bec ca-cag
(12 21 , 172 21
b -3ab b -ab )
%173 %3% 21°2 T 30

The value of the linear expression
aqx + b3y + C3
at this point is A/C - |
where A = ag (blc2 - tﬁcl) * b3 (claz- °2a1)
tg fa;b, - azh)),

and C = alb2 -a,zbl.

; : 4
A is the sum of the six terms T ai bjck
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where 1ijk is an arrangement of 123 and the sign is negative for
the three terms in which ijk is obtained from 123 by a single
interchange of two digits, and positive for the others,

A is written as ay b1 SRk
s ka €2
a b C
3 3 3

The two possible signs of the value of A\ correspond to the two
regions into which the line agx + by +c = n divides the plane
(i.e., the intersection of the given two lines lies to one or other
side of this line according as /\ |C is positive or negative).

/\ =0 is a necessary and sufficient condition that the three lines

should be concurrent,
A necessary and sufficient condition that three equations

a,p +b1q teyr = 0

n
o

a +b = cor
oP TP TG

|
o

+b._q+ =
a3p 3q CSI‘

should have a solution (other than p =g =r =0) (in the ratios p: q : 1)
isthat & =0

From the section formulae, if (x4 y1)s (xzyz), (x g y3) are
collinear, there exist multipliers 1,m, such that

Lx +mx2=(1 +m)x3
171 +mys = + m) y3

These equations can be written
xll t Xom t Xgn = 0
yil tyom tygn = 0
l +m + n = 0

and therefore a necessary and sufficient condition for the three points
to be collinear is

x1 :r(2 x3 =0

YO

1 1 1 "

e rece e st v .
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Compare the conditian obtained from assuming that the three points
lie on the line ax + by + ¢ = 0,

The area of the triangle

{2"1 %) Gguy), 0} s Hogyg - xpyy)
The sense of description of the triangle and its relation to the sign
of this expression should be explained.
Area of {(xl, N ), (XZ' yz). (X3. Y3)}
= areaof {(x;"X3, ¥;-¥3), (X9-X3,¥5-¥3), (0,0))
= L - - - = -
b0y xg) Gy 5) - Gy oxg) 5 7v5)]
= 1l x X X
2 1 2 3
y1 y2 Y 3
1 1 1

(b) Linear Transformations in the Plane,

LR

A - A e RIS (R thah oAt R e e A g e g v ok TR OB AR
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Introduction of Matrix Algebra

These notes form a first draft of a course aimed at teaching students
about matrices in a way which presents matrix algebra as a living
piece of mathematics which grew out of attempts to provide
solutions toc mathematical problems in a form in which the true
nature of the problem was not overwhelmed by a mass of complicated
and repetitive algebraic manipulation.

For a first course, where facility in matrix manipulation has to be
acquired, as well as understanding of the matrix operations, it seems
best to restrict the geometrical problems on which the matrices are
used to the Euclidean vector plane and the Euclidean three-dimensional "
vector space (in each of which an origin is kept fixed). The plane &
alone would afford plenty of scope, but the extension to three ,
dimensions is well worth the effort because of the need there is to give =
as much practice as possible in thinking in terms of three dimensional
images,

Much fuller notes, together with exercises, are expected to be
available before the end of 1965,

A, Transformations of the plane

In relation to a fixed origin O we define a set of geometrical
operations each of which associates with each point P in the plane
another point P', i.e., we transform the plane into itself or map
the plane into itself,

(i) Rotations ('"Turns'')

For a given origin O and an angle of given magnitude a, the
point P' associated with each point P is defined by:
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- O
* OP' = ¥OP
Write this relation between P and P' as
! =
P ¢7“ P

(Initially we may write write Ja (P), sinceJw is the symbol of a
geometric function of the points P , but the parentheses can be
omitted without introducing ambiguity — partly because of the
different founts used for ¢ and P).

J« 1s the symbol representing the operation of rotation which
transforms P into P'. We refer tog, as an operator. From
geometry we have

7 (vl Zey A G E)

Note the order of operations and operators :

*Z "followed by 't/ ~ has to be written % (“a P ), and again we may
omit the parentheses and write Js J P. In this case of course the
opevator % Jx , which is "the resultant of J« followed by %"

(or "the result of compounding g WwithJx ") is the same as Ja 3.

Since the relation
CZ{ (ZA’ P - % oy r

is valid for all points P in the plane, we could write it simply as a
relation among the operators.

(ZJ (7" = %’ 4'/4 < Ji c/fd
Now introduce the identity operator ¢, with the property

Fp = P

for all P, Then from geometry
TaTda =F
and we can introduce the inverse operator T - with the
definition
CZ; % LZ«

=1 : : . ) e
c7:,< is the unique rotation which compounded with & produces -

-1

(Could follow now with the set of rules for combining rotations,
including -

Cj;'fz ﬁ=c7a, (&fa) =C%“
See also subsection B, p.31 )

(i) Reflections ('Symmetries")

In relation to a given line a through O we define the
operation a of reflection in such a way that, for any point P,

p! = &P

2Q
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—

when |24 _j_ a
and a bisects PP!

P' is the reflection of P in a,

Properties,
1, ;a’a( ;aaP) = P for all P,
ie., o % =S
or &f -1 = f
a a
2. & o, ~p [rab

where Aab is the measure of the angle from i to b, and
O £Zab < m /(*ab + [*ba = 1r

2/; d:) =C72L’°‘ba ) C7é (v - [*ab) C7‘2 L#ab =(C72 [zab )

=1
In fact, si -
act, since | - (’afb 2{3)
2 -
25a - " A o, and therefore

-1 8

-1
da be - ( ja,be{a)

3. Givena, b, c through O there is a single line d
through O such that

o =
c ‘Jb Q!a . dd
(d is defined by /*ab = /*dc)
d::\ sz ‘dc g db ce{a
4. The fixed points under the operation da are the points

of the line a, i,e.,

The line a is point-by-point (pointwise) invariant,
If h _L a,and H € h, then

H' = S He=e=—= H € h

and conversely, so thath , h :,4 a, is overall invariant under
zfa if andonly if h _L a.

(iii) Translations (''Displacements'")

If AB are any two points they determine an interval "AB'

and a transformation “QAB of the plane in which, for any point P,

20
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£ p

AB

Pl

is defined by PP' // AB & PA // P'B

i &

Properties 1. BC ‘QAB = °Q:AC = cp’AB °@BC

2.

“QfAB °‘9BA -
-1
£ ap . “pa

S, "QAB r/a . da ag’AtBt

where Al = Sg a A . Bl = ﬁa B.

(iv) Congruence Transformations

The effect of an operator c7 » ,e:( or p’on any geometrical

figure is to preduce another geometrical figure, which, from
geometrical considerations, is congruent to the original figure. The
operators 7 ,&fand L can therefore be described as generating
transformations of the plane into itself or maps of the plane into itself,
and in particular to generate congruence transformations.

The explicit properties which remain invariant under these
transformations are:

a point transforms into a point
a line a line
parallel lines parallel lines
perpendicular lines perpendicular lines
an interval of * an interval of
length d length d
an angle of magnitude o an angle of magnitude e but

sense is reversed by reflection

B. Cartesian form of rotations, reflections,

2 x 2 Matrices

(i) Rotation:

7 -
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P is (r cos 8 , r sin 8 )
122 is (r cos( @ +«), r sin (8 +o<))
so that x' = r(cos 8 cos o< -sin 8 sin « )
y'= r(cos @ sin o - sin @ cos o )
i,e., X = cos %,x - sin o< .y
y' = sin e.x + cosoc.y (1)
Let us invent an algebraic operator To« , so that we could

write these equations in the form

x' % cos o< = Sinec| [x
y' sin o< cosoc| |y (2)
! =
or I Zin

wherez =Ix

1]
]
x—

are vectors, column-vectors, or column-matrices and

To< = COS ¢ -sin &
Sinec COSe¢
is the matrix of two rows l:cos‘,c : -sin{,,

[sin.c i COS&] and two columns
COS o > -Sin o
Singg

COSec

The symbolic relation (3) is a condensed form of (2) which in turn
corresponds exactly to the two explicit equations (1), ;

The matrix To 1s an algebraic operator transforming

the vector r into the vector ;‘

Let us follow the next step in the account of the geometric operators
to discover how to combine the algebraic operators. I.e., consider
the algebraic equivalent of

P"' =¢z P! =ZgJ=P.




Mathematics
First Level Notes

='cos/a -sir}a COS o -sine | | x
-Sirba cos} sin e cosec| |y
=[cosg cosec - sing sin « cosps (-sin)ed -sing cogx
sing cos«t cosg sin e« sin g (-sin«) + cosgcogdy
=fcos (=+8) - sin &@+p)|[x
sin (e« +p cos (=1g)lly
This is exactly 'E,.T.,r = Teapr and gives the rules which have to

be followed if the '"'matrices' T, are to correspond exactly to the
geometric operators¢~. This is the line of thought which led Cayley
to the invention of matrices to represent the operators and matrix

multiplication, to represent the compounding of two operators.

T, = |2 ol =

=

, the unit matrix,

0 1

W
.

’I_;_,'_l= 0 -1—1 . ’I,'-ll ==

1 C

-

The rule for multiplication shows up most clearly if we use double
subscripts, Take in a matrix A, a;; to be the element in the row
numbered i and column numbered j,” so that A can be written as

A=13; 3
a a
21 22
Th
<L column 1 column 2
AB = allb_l_l +a12 b_2_1 a1l b12 + a12 byo row 1
a b + a b a b + a b row 2
21 11 22 21 21 22 22 22
or, .if AB =C, then
Crs = ar1 bls * ar2 b25

clearly in general 2B }‘ BA , although
ToTw = Tx T 0uty 8, 7 & 8
Matrix multiplication is associative,
(ii) Reflections

If y = x tan e is the line 1, write de

ey o



Maihematicg .4
First Level Noteg

for,d’l, and 29 for the matrix corresponding to ﬁg . Then
" So =[1 0], Six = [01] S= [1 0
01 10 0 1

§9 can be computed directly from the Cartesian diagram, but it is
simpler to use the relation

Lo By -eZ,,
So Ly,

so that
Sg = ’;‘29 §0 = cos 2 g -sin2 g} (1 0
sin 2 g cos 2gj |0 -1
= cos 29 sin 2 g
sin 2 g -cos2 g

g
%
|
|
:
;

If we use the perpendicuiar form of the equation of the line:

X cosg + y sing = 0, where 0 = 111+ o,
we have
S = -cos 2 @ -sin 2 ¢ 1
2 | 5
M+ g [—sin 29 cos Zq;I |

(iii) The Affine Transformation

This transformation we define algebraically as a generalization

of S and T, and then investigate its geometric properties, The
discussion depends on the section formulae

aE R I 4 S R
ki + $ 3 ky + ko

which we can write as

k1t k) x5 = X X9 k
(k1 +kg) ¥3 Y1 Y2 | |k
Sex Gy dio) o = | n ] ok
The transformation is
' - Mr
where M = (ml 1 Miyg ~'

When this is applied to the points of a line
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(kl 5 k2) i = [rl rz] k,
(g , kg vary along the line) we find

[31 ¥2]

M {(k + ky) 1}

=

which we can rewrite as
(kitky) Mr = [1-\,4!'1 Mrp ] k

i, e., the transformed points are the points of

the line M ry; Mr,

Write # for the corresponding geometric transformation,
if & Po = P§ and Pg € Py B, we have

P! e P! P!
1 9 and

*P,Pyf *P; Py= * P{P'y [ Py

Thus, under the transformation A,
points become points

lines become lines

Then,

ratios of displacements on a line become equal ratios on the

transformed line so that

parallels become parallels
But

distancesare altered and

angles are altered

C. Some properties of Matrices under Multiplication

(i) The inverse matrix

M7l is defined by M M =1
If M = ‘—a b] and ¥'1 = |x y]
Lc d_j Lz 6
we have
X y a bw & 1 0
z t c d 0 1

)
1
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ax tcy = 1 az + ct = 0 Hirst Level%
bx +dy = 0) bz + dt = 1) ,
d -b
So that M-l = tad - bc ad - bc
= a
l_ad = b ad - be
L e ' i
Thus M| exists if and only if ad - be # 0 %
If A and B are any two non-singular matrices -‘:5]
-1 -1 -1, :
(4B) B A i
(ii) The determinant of a matrix :
1
Notation: ad - bc =det M =|a b | |
¢ d ‘ |
If det M = 0, the matrix is singular (i.e, it has no inverse), :
If the matrix M = a bl s singular,
c d
the affine transformation
M [xo: = ax = byo] = ax =+ byo
{ yoJ ox dy, ax, t by ) c/a

(provided a # 0), is such that for all points r the transformed

M r lies on the line cx - ay = 0, i,e,, the transformation is singular
the whole plane .being mapped onto the line,

Note that det T =1, det §_= -1

?

» so that these matrices

b N0 S ol AN e

are always non-singular,

By direct multiplication we find for any two matrices M, M'
det (M M') = det M det M’ = det (' M)

det (g-l) = (det 1\=/I)-1

(iii) The zero vector and zero matrix

o

= i'-o

0
L

—
no
"
o
o

-
ForallM, Mo =0 and MQ=2M=

=)




Nalhematics
First Level Notes

For this matrix we have

rr! rs'] lus' | = o foran
2 y u
r's ss'] [-ur'
. ~ T
and |rr' rs'| [ us vs' = 0 for any u, v
r's ss' -ur' -vr'
% - - i
and |hs -hr rr' rs' =0 for any h, k
ks -kr L r's ss'|

Thus in matrix algebra there are divisors of the zero matrix,

i,e., there exist pairs of matrices M and N, both non-zero such
that MN = 0. If we are given AB = Q we cannot deduce that either

Aor Bis the zero matrix, but only that, if neither A nor B is the

zero matrix, both are singular,

(iv) The transposed vector and matrix

Ifa= |3 | we write §T= {:al, az}

a

|2
for the transpose of a, i.e., the row -vector with components iden-
tical with those of the column vector a. Likewise

: _la b T def |a c
if M-L 1_\51 =
. d b d

If Aisany non-singular matrix:

a¥?t - @)’

If Aand B are any two matrices, and k any vector

@p’ = B A"
@pw® = kT Al
in particular 5T =gt =8 TT =17

(v) Uniqueness of § and T

Theorem

If under an affine transformation, with fixed origin, distance is
invariant, then the transformation is either a rotation or a reflection

We have to have
2 2

/

X + y = x> 5

——p

e e P ——————

RIS
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/ / : T

1. ec g -_£_ - -E__ )

e, (MT (M) 2 r'r
ie.rM™Mr = r'lx g
1\=’[T1)_/I_= =ra clia b| =|a®+? ab+cd |
ab+cd  b2+d? |
,b G d

g i 2

r MTM r = (a2~l't:2)x2 + 2 (ab+ted)xy + (b2~h:12)}'2
_ 2
r-r= x+y

Thus, if distance is invariant,

5 .
2+2 =1
az CZZ ab +cd = 0
b +d =1
Take a = coSe , C = Sinec,
b =cosd , d=sing,
then cos (<-8) = 0

i.e., eitherg = & =l or/_g = o4l T

and the two possible matrices are

cos sine] = __S_%tx

sinex - CcOose |
or cose -sinec ]| = Toc

sin cosec |
A matrix with the property %TL\__/I_ =1, i,e.,
MT = M_l, is called orthogonal,

D. Displacement, Matrix Addition, and Matrix Algebra

If His (h, k) and :@OHP = P!

where P is (x, y) and P' is (x', y'), we have

x'f . = x +h]|
y' y tk J
which we write as x! ] - 1 & iy |
}"J [ ¥ k
or as r' = r +h

This suggests an addition operation for vectors, and then immediately |
an addition operation for matrices.
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g
Ha= 13y a1+ BT |"n b12"
agl ag?2 ba1 bzzJ

We define A + B by:

def i
A+ B F a; T by a9t BPpg
LaZI + bog agg + P22
- def
Thus é +.£_\_ = 2a11 2a 12 = 2A;
iam 2399
define similarly nA, then if B=nA, 4 = 1; B

and so through rational to real scalar multiples of 4.
For any number K, kA =|ka;, ka, o =[k 0| |31 212
ka ka 0 k %1 a 99

21 22

[
>

det (kA) = K det

(zero matrix).

o ||

Definition of A-B, and A-A =

Combination of sums and products.

The rules of matrix algebra are the same as those for a field except

that:
1. Multiplication is not commutative

2. there are divisors of zero, i.e. not every element has a
multiplicative inverse.
E. The characteristic function, eigenvalues, eigenvectors, the Cayley-

Hamilton theorem

(i) The Characteristic function of A = [a b‘k is
c d

det (xl= -_J_X__) = x2-(a +d) x +det é

The roots of det (x1 - A) = 0 are the eigenvalues; for tnhese values
the vectors such that

(x1 - A)u=gare the eigenvectors

(ii) C-H Theorem:

The matrix A satisfies & - (@ +d) A+ @et A1 =0
Thus in forming matrix polynomials

éz may be replaced by (a + d)A -(det Al

393



F,

éa by (a +d) { (a +d) A - det é);}-(det A)A etc.

In particular, for M = rrl
r's

2

=

= (rr' + ss')

Discuss these also in relation to the geometric series,

(Cf end of item VI,)

Changes of co-ordinates

(1) Parallel shift of axes.

r' =r +h

Mathematics

First Level Noteg}
—°%8§

rs'|,
ss'

M.

may be interpreted either as a transformation of the plane in which

L is transformed into r',

or as a change of co-ordinates with new origin at -h and

axes p;rallelly displaced,

(ii)

Rotation, reflection,

Lol

;'?

1
r

=§££

may be interpreted either as transformations of the plane

or as changes of axes by rotation through - o<

(iii) Affine change

rt =

=

"

=
[V}

reflection in £,

M non-singular

Regarded as a change of co-ordinate systems we have

f

3 CZZO,“* xo/b)
—7'ch'°:.\d°)7(x‘°)%;)
/, I.

‘(j;xwro

L (xo,—c.‘:co/‘L)

Xo

#
)
-
|
LD

TERUARE S (TR KT

i

v Rl e giss

FRAIF YA ot

AL N e i
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Lis (x, -cx /d), M is (x,, -ax /b) First Level notes
] A = + e= %*
X, ax, byo p.*K P
yo = ¢%, tdy, = a.* HP

where p and q are constants:
p = (ad-bc)/ Jic2 + &)

q = (ad-be)/ /(a2 + b2)

The new axes are arbitrary lines cx +dy =0,

ax + by = 0 through the origin and the new co-ordinates are proportional

to constant multiples of the distances of the point from the new axes,

S U e e L e b i

Combination of change of axes and transformation:

"similarity' of matrices.

AT N Bhaat o
ey

Let us take an affine transformation of the plane in which the co-ordinates
of P' and P are connected by

=

)

/ = g

n=
]

|
E
B
»
|
§

and a change of co-ordinates from (x, y), r, to X, Y), R, where

lR,

R=Cr, and£=(_;_
C being non-singular.

In this new co-ordinate system, the co-ordinates x’ ,Y") of the point

ts . s 9 ’ ’ .
with original co-ordinates (x° , y’) are also givenby R' =C r!
] = ==

"cMC R

sothat R' =Cr' = CM

Ut

Thus if, in the new co-ordinates, the transformation from P to P is

represented by

Rl

"
Iz
[§=s]

ten N : CMC

[P

is the transform of M by C, and the
matrices M and N are described as similar

Theorem: IfL is similar to M and M is similar to N then L is

similar to N. '"Similarity' is reflexive, symmetric, and transitive.

It may be noted that, using C =L0 1= (_:'1 , we find
1 0

-

I;. sl s et tohld )
c d b J
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The principal algebraic theorem for similar matrices states a
condition which is sufficient but not necessary, although it is only in
the "exceptional' cases that the converse theorem is not valid, In the
usual applications made of the theorem only the sufficiency condition ig
required,

Theorem 2, If two matrices are similar then their characteristic 43
functions are identical, .j
Proof : LetN=CMC™!, ?
then det (xl - L=) = det (xi - (__; ])__/I (=3-1) |
=1 e |

=det (xC1C -CMC ") ]

e TR - - = "

= det C. det (x1 - M). det (g_l)

det (CC™) det (xl - M)

=det (x1 ~ M)

This theorem cculd be statied in the form:

"a sufficient condition for two matrices to have the same characteristic
function is that they should be similar', The converse theorem: ''a
necessary condition for two matrices to have the same characteristic
function is that they should be similar' is NOT TRUE, That is, there
is NO THEOREM: if two matrices have the same characteristic function
they are similar. For example, the set of matrices similar to o1,
namely, B

C (1) g-l, consists of the single matrix «l

itself, The characteristic function of =1 is (x -Q’.)Z, which is the 1
characteristic function of any matrix of the Si{frx ul |
lo

odJ |

o fixed, uarbitrary. Such a matrix is similar to «1 only if u = 0, We
shall prove in fact (for 2 x 2 matrices, there is no—corresponding
simple result for larger matricei) that the only set of exceptional
characteristic functions is (x=o¢) and the only exceptional matrices
are those of the set (xé} . We have however the following weaker theorem
valid for all 2 x 2 matrices, and in fact for all square matrices: :

Theorem 3, ¥ M = [a  bjand N

n
\V)
o’

c d ¢! d'
have the same characteristic function, i.e,, if M and N are such that
a+d = a' + !

and ad - be

aldl - blcl
. \ . . (,,1
itnen there exists a set of matrices \é}such that

cM = X

(@
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The theorem fails to be the complete converse because if M and N are
to be similar, we require also that C should be NON-SINGULAR, If for
a given M and N all members of{ C}are singular, then M and N are not

similar - there is no g for which C M g', =N
Proof: Assume that (=3 = [x y
Lz t

and that C M = lll g; write

I

|[@!
=2
'
'z
e}

Theng__ M = Ii QVA—__—:>Z = Q_: That iS,
p = hx + ¢y - b'z =0
q = bx - Ky -b't =0
r 2 -¢'x + kz + ct=0
s = -c'y+bz-ht=0,
where h = a - a' = -(d-d")

and we have

We have the identities

bp t+ b's = hq.

c'p tcs = -hr,
so that, if h = O,

(p=0Oands = 0and h %—O)

= (@=0andr = O)

Similarly

(g = O andr = O and k #O)

= (p = Oand s = O)

Thus for -
(b'z - cy)/h y i
h= O, =
Cl. L A (bz - C'}')/h
and for I - (bx - b't)/k |
k = 0, =
2 L(c'x - ct)/k t

U e it

U [

AR et ———
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boch satisfy the condition for all pairs of values (y, z) and (x, t)
respectively.

The matrix C, is singular if

2

b 2° - (be +B ¢ +12)yz +c’y2 = o,

and all matrices of the set {Cy are singular if
bb’ = 0, cc’=0,

and be + h? = 0,

We already have the relation
be -b'c’ +hk =0,

so that bec = }hi(h + k),
bec = lh(h-Kk)

Since h#0, the only two sets of solutions of the equations are

3

b=c=h+k =Ow11ichimpiya =,
and b=c’ =h-k=0whichimply a’ =d /
for which respectively M = al and N= all.

The same result is obtained from the conditions that all matrices of
the set{Colare singular, Thus, provided either h#£0 or k#0, the
only sets of pairs of matrices M and N having the same characteristic
function which are such that every matrix _(__3_ which satisfies the

conditionC M = N C is singular are
M=al , Nfal
and I\=/I#a’;,§=a'l_

We have now to examine the case h = 0, k=0

2

Thatis: a = d = a' = g

and bc =b'c',
We have
= _ =
P, =¢¥ bz s, ¢ ¥ thz
- / - ’
qo-bx - b3 r, = =¢x+tect
so that

and ¢ q,t bro =0
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Again therefore only two of the four equations are independent and the
possible forms of the matrix C are:

b 0,C = |[b't/p vl ]
c'y/b ¥ Always singular

44

if and only if

c:/s 0, C = X b'z/c
4 b = ¢ =0
zZ C'x/c__ J
and corresponding matrices for b’ 74 0, c':fl: 0, which are always

singular if and only if b = ¢ = 0, Thus again, the only cases in which all
matrices of the set {C}are singular are

M=al , NfaL

M anl B N=a'l

We have now exhausted all the possibilities,

The exceptional cases all occur when the characteristic function is the
square cf a linear form, that is,

when (a +df = 4{ad - be),

so that the full theorem on similarity and the characteristic functions

for 2 ¥ 2 matrices may be stated thus:

Theorem 4 : (i) The set of matrices a b
c d

both non-singular and singular, for which either

(@ -d)? +4bc # 0
or (a-d)2 + 4bc = 0 and not bothb= 0andc .= 0,
can be split into a set { =0} of mutually exclusive subsets = by the
equivalent properties:
two matrices belong to the same subset L if and only if (a) they are

similar, or (b) they have the same characteristic function.

(ii) The set of exceptional matrices, that is, those for which b =c =
a-d = 0, namely, the set{a ;} , including 0, is such that each matrix,
although it has the same characteristic function as the matrices in some

subset = , is similar only to itself,

It is necessary to emphasize that the theorem in this form is

peculiar to 2 x 2 matrices, the full statement for larger matrices is
much more complicated, It would never of course be expected that
students would "learn' the proofs of the converse theorem or even the

theorem itself, but the sufficiency theorem and its method of proof are
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of considerable importance., The value of the converse theorem lies

in the way it illustrates the vagaries of the solutions of linear

equations in relation to conditions which are sufficient but not necessary, §
- |

Another facet of the same algebra is the determination of the matrices

FIRSTIREN—

which commute with a given matrix, i.e., of the set C of matrices

i
for which, for a given matrix M, 1\__/I c =CM

PESASIVLLI Y TS

NOTE:

For rotations and reflections, since

e
-1 -1
T =T L, st = 8T, )
the relation of similarity takes the form
N=sM§ ,N-=IMT

H. Reduction of quadratic forms - Conics

General foerm: ax2 + 2hxy + by2 + 2gx +2fy +c =0
First step: shift of crigin to produce in general
2 2
ax “ + Zhxy +by* + A /C =

Cases C =0, A&=0.

Second step: Reduction of ax2 +2hxy + by 2 . 1,
i.e., [x,y:] a h x] = _I_‘T C r =1,
h b yJ
by rotation of axes, |
Take ! = T. r , 3
= —4 g 2 ;‘
i.e. r =3~ &'
= _e =
and suppose in the new co-ordinates ax? + 2hxy + b)z =1
becomes  ox'2 *-‘,6}"2 =1, i,e. r' [_0‘ 0] pleon TQ‘Q = 1
We have then
rCr = (Ter)' C Tor =r(HC To)r
=" Dy
I =
So that 40 g ‘6 = Q

Thus C and D are similar, so that

atb= o4,

ab-h% =y,

specifying the form of the conic,
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& o, 4 are the eigenvalues of C , the eigenvectors lie along the
principal axes of the conic.
If we want the angle © through which the axes ar turned we have to
equate to zero the element 12 in the matrix T¢ € TO. We find
tan 206 =2h/(a=b).
. The only work on conics need consist of the identification with the
curves above of the curves given by the focus-directrix definition, and
F the shapes of these curves.,
i, Note on Complex Numbers as Matrices

(to supplement the usual treatment of the Argand diagram.)

z =x +iy =r(cos® tisin@)

z =[x = r[cose]

{ Ly:l sin@

t z=(x ~-y]= rjcos® -5in@

} y x Line cos®

] 2" =z toemz =z tze—Z T2t L

corresponds to =Z;1 . é.’é = (x2 2 yz) 1.

N

If <is a point, € , =[a], on the Argand diagram and
?\=P(cose + isin 9 ),
ThenX<corresponds to cos 6 -sin© a
sin 6 cosf bl,

i.e., the point obtained by rotation and multiplication by P in the usual way.

Groups

(i) Introduction

The sets of rotations through 180°; of®, 180 0, 2700, 2400; .
{(360 r/n)o} about 0 and effect of these transformations on corresponding

regular polygons with centre at 0,
Combination of any of these with a reflection in line through O and

vertex or mid-point of side of the polygon.

(ii) Definition of a group:

A group is a set, say G = {_A,B,C, . }
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» for combining two members to pProduce
a third, which has the properties:

together with an operation, *

l. A€G and BEG==A*BeqG (closed)
2. (A*B)*C = A * (B * C) (associative)
3. There isl , l€G, such that

A*1l =1 % A = A

4. For every A there is A '€G such that
A*A'l =A-1*A =1
(In general A * B#B * a),

Change notation: A * B in future written as AB,
-1 -1 -1
Theorem: (AB) = B A
Various sets of rotations (and ail rotations) abo

ut 0 form (commutative)
groups,

Reflections together with rotations (with fixed 0) form a (non-

commutative) group,

(iii) Special finite groups that mignt be used as examples,

% 4 A
e . 5§ SO T ) Sl ok IR E
SRR TR SRS SER AR IR R PRIDF ) SURS R SUPI I SR T EEIRENS S SRR WP LRGP O

a, Symmetric group on three elements (A 3)

al. Symmetries of equilateral triangle PQR,

(For convenience of typing put S, T,1 forQYCZJ{)

T: rotation about centroid through 120°
S: reflection in altitude through R.

The various positions of the triangle after combinations of these
transforms are:

(TS is ''S followed by )

2
1 T T S
R Q p
P Q R P Q R Q P

TS %5 ST sT2

p Q Q p
R Q P R P R R Q

2 2

STS ST s TST TST

P Q R Q
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The following pairs have identical effects on the triangle:
2 - 2 , Sree O ,
Sand TST, T and STS, T and ST S, TS and ST " etc, That is, among
the members of the set of operations we have the relations
3 2 2 2
1 =1, 80 = 1.5 =71, T =8TS, T =5T 5ete,

B 2 9 9 ) -
But T =ST?S &TS =STS> =ST2LSTST =ST = S ete,

so that the only distinct relations are

2 3 2
1 = § = T =(TS)

and the only distinct operators are
: —— =
1,5, T, T 5T, T

a2, Permutations of three symbols (a, b, c)

Take

U: the operation of interchanging symbols in first and second
places

V: the operation of interchanging symbois in first and third
places

2 2

U = 1:’ VvV =

[ Lones

U(a,b,c) = (b,a,c), V(a,b,c) = (c,b,a)

VU(a,b,c) = (c,a,b), UV(a,b,c) = b,c,a)
UVU(a,b,c) =(a,c,b), VUV(a,b,c) =(a,c,b)
We have UVU = VUV, and have formed all six permutations,

The relations are

vl = 1; Vv o= 1, UVU = VUV&e (UV) 3 = 1= vu)®

We can identify with (al,) by taking
U =5, V =TS

(UVU = STSS = ST = T2S = TSSTS = VUV)

(The identity of these two groups is in fact clear from their original
definitions).

a3, A3 as a certain set of rational functions

Take x € {Reals}— {0, 1} .

Define f(x) 1/x, g(x) =1-x

1-1/x=(x-1)/x

f(g(x)) 1/(1-x), g(f(x))

g(f(g(x))) 1-1/Q1-x) = x/(x-1), f(g(f(x))) = x/(x - 1)
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Treating f and g as operators, we have

2_ 2
f7=g" =1, fgf = gfg

They generate a group identical with (al,) and (a2, ).

b. Groups{l, elets p-l) under multiplication, {0, ... p-1} undep
addition, p prime, for remainders modulo Pe

{1, -1, i, -i} under multiplication
ch The group of rotations, reflections, displacements.,
(a) Origin fixed
The operators T, form a commutative group, with rules of combip,
tion T 'I/‘a = Tou/e = ’;oTaL

Ta +2r7 = T

The operators Sa do not form a group, since the resultant of two
reflections is not a reflection, but Sa and Tetogether form a group,

(b) Translations form a commutative group:

(c) Congruence

e = 5,8 where £ L AB, m | AB

and distance between £ and m = }*AB

We may replace any translation by reflections in a pair of parallel

lines, one of which could be made to pass through an assigned point,
AB® = 5Py |
we may reduce any system of translations, reflections and rotations |

{
|

and, using the relations Sa Sb = Té*ba and D

to a transformation consisting of some combination of

(e<) a rotation round any given point 0,
(/J) a reflection in a line through 0, and

(v ) 2 reflection in a line not through 0,

namely, -(e) with (v) or (g ) with (¥) or (e<) or ¢8) or () alom

d. Groups defined by matrices under multiplication

(a) Reflection and rotation matrices generate the same

groups as the corresponding geometric operators, E, g. the group

Ag is generated by

Ty90° ©

=
1]
1
LS
1
LS
Tl
w)
~
n
=
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_ S =S = -1 0] , S =1 etc.
= =0y = =
i : 0 1
?’ The group of symmetries of the square:
g Soy? s = [1 O
& Lo 1
% §X=y = .§.l = 0 1-1
(1o
& 2 -s? =1.@0% - @9’- L.
§ (b) Groups generated by matrices over modular fields,

E.G., inthe field of remainders on division by 2;

=2
1]
— — !
e =
=
N
n
o
e
12
w
n

2 =1 (Group A,)

'z
"

f o], N o= 1L, MM? = M

R TR
I
N

0
W~

(¢) The matrices of the set { C}such that for a given matrix

-1
M,CMC = M. (Do the matrices for whichC M = M C

A

form a group?)

(¢) Analytical geometry of three dimensions

For the first two or three years this topic will be examined
on the assumption that it has been treated in the way described in the

notes on item II. 14, The intersection of three planes and the solution

of three simultaneous linear equations may be treated as at present (see,
for example, Report on Leaving Certificate 1962, Mathematics Honours
I, question 1). 3 x 3 matrices and their application to three
dimensional geometry will not be examined at present. Ample notice

will be given of any intention to set questions on this treatment of the

subject,

| ELEMENTARY DYNAMICS OF A PARTICLE

¥Throughout the work on this topic the emphasis should be on the use of the
iCalculus to express the relations of mechanics, and not on the solution of
icomplicated problems, It is not intended that a large number of formulae
ishould be committed to memory but rather that the student should be able to
erive any result from first principles whenever it is required.

ectilinear motion of a particle may be described by a functional relation
g = f(t) where x is distance measured from an origin and t is time from a
E given instant. Velocity and acceleration will be defined as differential co-

Eefficients x and X where the dots indicate differentiation with respect to t.
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I'he kinematical formulae

. . 2
X=a, x=u+at, x=ut +} at

2
for uniformly accelerated motion will be derived,

The classical statement of Newton's Laws of motion (excluding the third law)
should be given, By choice of units the Newtonian formula F = ma follows,
For motion of a particle in a straight line this becomes

9

d™x
m = F

P)
dt”

where F is the force acting on the particle at time ¢t in the direction in w hich
X increases. If F is known at each instant of the motion this is a differentia]
equation to determine the motion,

Setting v = X the €quation may be written

dv
ISVt =
dx

or
1 2
i (= mv = F
dx -*2

Then, integrating from X1 10 X5 with corresponding velocity values Vi s
vy We get

2 2 /xr,
1 Lo 1 S s - T
amv, -3 mv = T dx
. 2 4 1 Xl

On the left we have the increment in the quantity 3 mv2, which is called the
kinetic energy of the particle of mass m moving with velocity v; on the
right we have the work done by the force acing on the particle during its
displacement, .

Thus

Increase in kinetic €nergy = work done by the external force acting
on the particle,

is a function of x also. V is called the potential energy of the particle at x,

Then
X2
/;1 F dx = \ - Vo

and the energy equation may be written

2 2
+ Vv =%mv2 t V,

(S

m Vl

So the quantity

ST
3
<

.‘
<
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_:"-: constant throughout the motion. This is a statement of the conservation
(mechanical) energy - the sum of kinetic and potential energies is constant,
i Of course it is a mathematical theorem derived by integration of the

‘equation of motion - and applies only in the 'conservative' field of force

considered,

7

'The important cases in elementary work are (i) the case when F 1is constant
® (motion under gravity), (ii) the case when F is proportional to x {motion
% near an equilibrium position) leading in particular to simple harmonic

E motion defined by the equation

Pt E

<! g d

ATV Y
e

2 2
d™x = X

- o dt

e |
> )

A
;

ke
AT,
-

|

i
‘with solutions

k i

= X = a sin (nt + b)
X x = a cos (nt +b)
o X = Acosnt +Bsinnt

i

@k Discussion of resisted motion should he restricted to the case of a particle
S moving vertically under gravity and subject to a resistance proportional

3 & . - - . -

& to its velocity., The equation of notion will then be

.Eil' = <V - orcﬂ’. = - kv +
at . it -

and the solutions are easily found.
'3

'Motion in two dimensions should deal only with the parabolic motion of a
‘projectile under gravity, Find the height of flight, and the range on a
thorizontal plane, for given conditions of projection, and the maximum height,

and maximum range for a given speed of projection,

It is suggested that the work on dynamics should not be treated as a separate
unit, but that, as far as possible the applications should be made whenever
ppropriate to illustrate the use and value of the calculus, It may be recalled
that the subject was developed originally in just this context,

5

2
"

THEORY OF PROBABILITY

The treatment is to be the same as that described in the Notes to Level II
f.ém 19, but the following possible type of application of matrix algebra to
representation of certain stochastic processes could be introduced as an
€xample of the use of matrix algebra.

»



A succession of operations consists of either tossing a coin or throwing a
die. If the coin comes up heads or the die shows "6", the next operatio
tossing the coin, otherwise, throwing the die, Represent the operations
C, D, then'the succession from C is

¢ BNE
Ih 9

(probabilities) ( + 1’lé ) . (% 2 i

Thus, if at any stage the chance that the operation is C is p, and that it ig
D is g(= 1-p), then, at the next stage 8

pl = F_]‘ ‘1_ p = 1 p
2 6
1 5 L-
q' =y 9
- 2 6 ;
Matrices M = [ a -b are such that M" = (a+b)M and b
-a b 3 |

1 (1-a-bf! ) o
“@o) Xt o M — (etc.) asn — oo °

n jg
by

4 v i 3lis, ’I'; . “\‘W' 1, .l“‘ ‘\". £ "‘,
Nfa REDER & F"’),.F_ 5 SN L

1
6
1 q
6

ST

H—

*
2
b
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APPENDIX

The relation of the Second Level (2F) Syllabus to the First Level
Syllabus

L% The Second Level (2F) Syllabus is wholly contained in the First Level
-%ynabus. The two courses preferably should be taught separately, so that full

" ,dvantage can be taken of the First Level student's quicker perception and higher
'»te of working, but in schools where very few students study Mathematics at First
. [evel it should be practicable to teach First Level and Second Level (2F) students in
,‘ same class for part of each week (say not more than five periods) throughout the

e 7

" ‘two years.

The First Level Syllabus may be thought of as constructed in three tiers:

Tier 1: the part which forms the Second Level (2F) Syllabus,

Tier 2: extensions of topics in the Second Level (2F) Syllabus,
B Tier 3: topics with no significant counterpart in the Second Level
% (2F) Syllabus.

i For example, initem I. 1 of the First Level Syllabus, item I, 1(d) includes
(Tier 1) the whole of item IL 5 in the Second Level Syllabus, and then proceeds

(Tier 2) to a discussion of a convergence to a greater depth than is required for
‘Second Level, On the other hand, itern I, 1(c), complex numbers, belongs to Tier 3

o tes)

: has no counterpart in the Second Level Syllabus.

2
¥

A

x

. "-

=

2o
ke, %

et

g An advantage of this arrangement is that, if circumstances are such as to
ecessitate the teaching of students at First and Second (2F) Levels together for

rt of the time, then, while the Second Level (2F) students are spending time

solidating the work done by the combined class, the First Level students can

ceed to Tier 2 or to Tier 3. Tier 3 also can be made to act as a flywheel,

ing continuously for two or three of the periods each week independently of the

pics that are reqiired to be taught in the combined class.

The principal items in Tier 3 are I.1(e) and I 4(b).

B One of the items which is effectively the same for First Level and Second
(2F) is item II.19 = item I,6, This item could be introduced at almost anytime
fter the binomial theorem (item II, 18) which in turn could be introduced at almost
iy stage, Another is three-dimensional geometry (for the first few years of
Peration of this Syllabus) Item I, 4(c) = item II. 14,

4 If it is deemed necessary to cater for students taking SCIENCE at Second
' (2F) or First Level, then the Calculus should be introduced as soon as
Practicable; the order of the items in the Mathematics Second Level (2F) has been
Sen with this object in view.

For the convenience of those whose circumstances do not allow First Level
'dents to be taught separately all the time, the following table of relations between
{Second Level (2F) and First Level Syllabuses has been prepared.:



e i i e S S S G S

II F I
Tier 1 Tier 2 Tier 3
Item No, Item No, Item No. Item No, 1
31
1 a l1b 1a
1b 1l ¢ 1L (& le
2a,b,c 3 a
3:.: -
4atoe 4 a 4 b
5atof 1d 1d
6 a 3 b
6 btoi 3 e 3l e
7Tatod 2 a
7 e, f 4 a
8 a,b,c (4b) 4 b
9atog 3¢ 3 c
Oatod 3d 3d, 3g
latoc 3c,e 3 e
2atoh 3f 3f
Jatoe 3f 3f
4+ aiod 4 ¢ (4c)
oatoe 5 B}
6 a toc 3f
Ta 2a 2a
7 btod 2b 2b
8 atoc 2c 2c, 3h
9 a to f 6

This item i ,
the ordinary-with-Credit Level Course, I.4 b could be started during the teag
of II, 3,

s in the Advanced Level Course for the School Certificate but not
v

e y

V. C.N. Blight Government Printer
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