

Penrith Selective High School

2014

Higher School Certificate Examination

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-16, show relevant mathematical reasoning and/or calculations

Total Marks – 100

Section I

Pages 2-5

10 marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section

Section II

Pages 6-14

60 marks

- Attempt Questions 11–16
- Allow about 2 hours 45 minutes for this section

Student Number:

Students are advised that this is a trial examination only and cannot in any way guarantee the content or format of the 2014 Higher School Certificate Examination.

Section I:

10 marks

Attempt Questions 1–10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

- Q1. What is 6.04976 correct to 4 significant figures.
 - (A) 6.049
 - (B) 6.0497
 - (C) 6.050
 - (D) 6.0498
- What are the solutions of $3x^2 7x 3 = 0$? Q2.
 - $(A) \qquad x = \frac{-7 \pm \sqrt{85}}{6}$

 - (B) $x = \frac{7 \pm \sqrt{85}}{6}$ (C) $x = \frac{7 \pm \sqrt{13}}{6}$ (D) $x = \frac{-7 \pm \sqrt{13}}{6}$
- Q3. $\frac{x}{3} \frac{x-4}{6}$ is equal to
 - $(A) \qquad \frac{x-4}{6}$
 - $(B) \qquad \frac{x+4}{6}$
 - (C) $\frac{x+2}{3}$
 - (D) $\frac{x+4}{3}$

- Q4. What are the solutions of $2\cos x = -\sqrt{3}$ for $0 \le x \le 2\pi$?
 - (A) $\frac{\pi}{6}$ and $\frac{5\pi}{6}$
 - (B) $\frac{5\pi}{6}$ and $\frac{7\pi}{6}$
 - (C) $\frac{\pi}{3}$ and $\frac{2\pi}{3}$
 - (D) $\frac{\pi}{6}$ and $\frac{7\pi}{6}$
- Q5. The line which is perpendicular to 2x y + 1 = 0 with a y intercept of 4 has equation:
 - (A) y = -2x + 4
 - $(B) \qquad y = \frac{-x}{2} + 4$
 - (C) y = 2x + 4
 - $(D) \qquad y = \frac{x}{2} + 4$
- Q6. What is the derivative of $\frac{x}{2x+3}$?
 - (A) $\frac{3}{(2x+3)^2}$
 - (B) $\frac{1}{2}$
 - (C) $\frac{4x+3}{(2x+3)^2}$
 - (D) $\frac{1}{4}$

- Q7. Two six-sided dice are thrown. The probability that the sum of the uppermost faces is even is:
 - (A) 1
 - (B) even
 - (C)
 - (D)
- Q8.

The diagram shows the graph of y = f(x). The equation of y = f(x) is:

- $f(x) = \left| \frac{1}{2}x 3 \right|$ (A)
- (B) f(x) = -|2x 3|
- (C) $f(x) = -\left|\frac{1}{2}x + 3\right|$ (D) $f(x) = -\left|\frac{1}{2}x 3\right|$

Q9. The diagram shows the graph of y = f(x)

Which of the following statements is true?

- (A) f'(a) > 0 and f''(a) < 0
- (B) f'(a) < 0 and f''(a) < 0
- (C) f'(a) > 0 and f''(a) > 0
- (D) f'(a) < 0 and f''(a) > 0

Q10. A geometric series will have a limiting sum if:

- (A) |r| < 1, where r is the common ratio
- (B) |r| > 1, where r is the common ratio
- (C) r < 1, where r is the common ratio
- (D) r > 1, where r is the common ratio

Section II

60 Marks

Attempt Questions 11–16

Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE booklet. Extra writing booklets are available.

In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

a) Simplify the expression
$$3x - 5(x - 2)$$

b) Given that
$$S_n = \frac{a(r^{n-1})}{r-1}$$
, find S_n when $n = 12$, $a = 3$ and $r = 2$

c) Differentiate
$$2x^3 + x^2 - 2$$

d) Factorise
$$16a^2 - b^2$$

e) Express
$$\frac{2}{4-\sqrt{7}}$$
 with a rational denominator

g) Given that
$$log_ab=2.75$$
 and $log_ac=0.25$, find the value of:
 (i) $log_a\left(\frac{b}{c}\right)$

(ii)
$$log_a(bc)^2$$

a) Differentiate and simplify where necessary.

(i)
$$xln(x-3)$$
 2

(ii)
$$\frac{3x^2 - 4x + 7}{x}$$
 2

b) (i) Evaluate
$$\int_{1}^{3} 6e^{3x} + 1 \ dx$$
 2

(ii) Find
$$\int \sin 4x \ dx$$
 2

c) Find the equation of the tangent to the curve
$$y = \frac{1}{2} sinx$$
, at the point $(\pi, 0)$

d) Sketch
$$y = 3\cos\frac{x}{2}$$
 for $-\pi \le x \le \pi$ showing all key features.

e) A point P(x, y) moves so that it is always twice the distance from the point A(1, 4) as it is to point B(2, -8). Show that the equation of the path traced by P is $3x^2 - 14x + 3y^2 + 72y + 255 = 0$.

a) The diagram shows a triangle ABC. The point A(4, 1) lies on l given by the equation x + 2y = 6, and the point B(-5, -2) lies on the line k, given by the equation y = 2x + 8.

- (i) Show that the point C, which is the point of intersection of l and k has coordinates (-2, 4).
- (ii) Find the gradient of the line joining A and B.
- (iii) Hence, or otherwise, find the equation of the line AB.
- (iv) Find the perpendicular distance from the point A to the line k. 2
- (v) Hence, or otherwise, find the area of the triangle ABC. 2

Question 13 continues on page 9

b) Food tins are stacked so there are 49 tins on the bottom row, 45 tins on the next row, 41 tins on the row after and so on until a total of 321 cans are stacked.

- (i) Write down a formula for the number of cans in the nth row.
- (ii) How many rows are in the stack in total?
- (iii) How many cans are in the top row of this stack?
- c) If α and β are the roots of the quadratic equation $3x^2 + 8x 7 = 0$, find the value of:
 - (i) $\alpha + \beta$
 - (ii) $\alpha\beta$
 - (iii) $\frac{1}{\alpha} + \frac{1}{\beta}$
 - (iv) $\alpha^2 + \beta^2$

Question 14 (15 marks) Use a SEPARATE writing booklet.

a) A factory manufactures light bulbs. Testing showed that 1 out of 20 bulbs tested was faulty.

Three of these bulbs are selected at random and tested.

What is the probability that:

(i) All three bulbs tested are faulty? 1

None of the bulbs are faulty? (ii)

1

(iii) Exactly two bulbs are faulty? 2

At most two bulbs are faulty? (iv)

2

ABC is a sector. \angle BCD = $\frac{\pi}{6}$, BA = BC = 9 cm and $DC \perp AB$. b)

3

(i) Calculate the area of sector BAC.

Calculate the area of the shaded region. Leave your answer in exact (ii) form.

3

- Find the primitive of: c)
 - (i)

1

(ii)

2

Question 15 (15 marks) Use a SEPARATE writing booklet.

- a) Consider the curves $y = x^2$ and y = 4x + 5.
 - (i) Find any points of intersection.

- 1
- (ii) Sketch the graphs of the two equations on the same set of axes.
- 2
- (iii) Find the area of the region enclosed by these two equations.
- 2

- b) Consider the function y = 2sinx + cosx
 - (i) Copy and complete the table of values correct to three decimal places where necessary.

х	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π
y					

1

3

(ii) Use two applications of Simpson's rule to calculate the approximate area under the curve between x=0 and $x=\pi$. Leave your answer correct to 2 decimal places.

Question 15 continues on page 12

c) A cylinder is made to fit inside a sphere with fixed radius r as shown in the diagram.

Let x be the distance from the base of the cylinder to the centre of the sphere, as shown in the diagram. Let R be the radius of the circular base of the cylinder.

- (i) Find an expression for, R, the radius of the base of the cylinder in terms of r and x.
- (ii) Show that the volume, V, of the cylinder is given by $V = 2\pi x (r^2 x^2)$
- (iii) Find, in terms of r, the maximum volume of the cylinder. 3 Give your answer in exact form.

- a) Find the equation of the parabola whose axis is parallel to the y-axis, vertex is (2, -1) and has a tangent with equation y = 2x 7.
- b) A quantity Q of radium at time t in years is given by $Q = Q_0 e^{-kt}$ where k is a constant and Q_0 is the initial amount of radium at time t = 0.
 - (i) Given that $Q = \frac{1}{2}Q_0$ when t = 1530 years, calculate k, correct to three significant figures.
 - (ii) After how many years does only 20% of the initial amount of radium remain, to the nearest whole number.

A T W CNot to scale

ABCD and DEBF are two congruent rectangles with sides 3 and 7 units as shown in the diagram. (AB = DF = 7, AD = DE = 3)

- (i) Show that $AT = \frac{20}{7}$
- (ii) Find the area of the figure *DWBT*.

Question 16 continues on page 14

d) A truck is to travel 1000 kilometres at a constant speed of v km/h. When travelling at v km/h, the truck consumes fuel at the rate of $\left(60 + \frac{v^2}{50}\right)$ litres per hour.

The truck company pays \$1.40 for fuel and pays each of the two drivers \$40 per hour whilst the truck is travelling.

(i) Let the total cost of fuel and the drivers' wages for the trip be *C* dollars. Show that

$$C = 28v + \frac{164000}{v}$$

(ii) The truck must take no longer than 12 hours to complete the trip, and speed limits require $v \le 100$.

At what speed v should the truck travel to minimise the cost C?

End of Paper

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

Multiple Choice Answer Sheet

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample:

$$2 + 4 =$$

(C) 8
C
$$\bigcirc$$

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

A

 $C \bigcirc$

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word 'correct' and drawing an arrow as follows.

Start _ 1. $A \bigcirc$ B **O** CODO Here 2. CO A O ВО DO 3. A O BO CO $D(\mathbf{C})$ 4. CO $A \bigcirc$ ВО DO5. A O ВО CO DO 6. Λ CO вО DO7. ВО CO AODO 8. A OCOВО $D \mathbf{O}$ 9. A OВО CODO **10**. A O ВО CODO

2014

Mathematics Trial Solutions

Multiple Choice

1	С
2	В
3	В
4	В
5	В
6	Α
7	D
8	D
9	Α
10	Α

Question	Marker
11	Lopez
12	Soth
13	Katyal
14	Antone
15	Young
16	Chirgwin

Exam 2 UNIT TRIAL MATHEMATICS : Question	
Suggested Solutions	Marker's Comments
a) 3x = 5(x-2)	nade When factorisis
32-52+0	after simaling.
-2n-10 or -2(x-5)	-iA few students. Wenton to Solve for E
b) $S_n = \frac{3(2^{12}-1)}{2-1} = 12.285$	
c) J'=b2+1x	
d) (4a-b)(4a+b)	
e) $\frac{4+\sqrt{7}}{4+\sqrt{7}} \times \frac{2}{4-\sqrt{7}} = \frac{8+2\sqrt{7}}{9}$	
f) $A = P(1+50)^{N}$ $r = 74 = 1.75$ nc 20 = 1000 $(1+\frac{1.75}{100})^{N} = 1415 .	- 7% and term was no comerted to quarters students ever-confliction by not using comfound interest formula.
3) jlogab - 109a C = 2.75 - 0.85 = 2.5	
ii) 2(10926 +119ac) = 2(3) =6.	-A large nearly of students had $(3)^2 = 9$

 $= \frac{6x^2 - 4x - 3x^2 + 4x - 7}{x^2}$

 $y' = \frac{3x^2 - 7}{x^2}$

(b) $\int_{1}^{3} 6e^{3x} + 1 dx$ $= \frac{6}{3}e^{3x} + x \Big|^{3}$ $= 2e^{3x} + x|^3$ $=(2e^{9}+3)-(2e^{3}+1)$ $= 2e^{9} - 2e^{3} + 2$ = 16167.997 (fo 3dp)

Some students confused unte gration with differentiation nultiplied instead of dividing by 3. Some Students

did not evaluate.

expand correcti

forgot the $+C$. c) $y'=\frac{1}{2}\cos x$ $y(x)=\frac{1}{2}\cos x$ $y(x)=\frac{1}{2}\cos x$ We substitute: $y-y,=m(x-\pi,1)$ $y-0=-\frac{1}{2}(x-\pi)$ $y=-\frac{x}{2}+\frac{\pi}{2}$ or $x+2y-\pi=0$ Students did not write the general correlation of the interval x $y=\frac{\pi}{2}+\frac{\pi}{2}$ $y=\frac{\pi}{2}+\frac{\pi}{2}+\frac{\pi}{2}$ $y=\frac{\pi}{2}+$	10	394
Suggested Solutions Warker's Comments What $4x$ dx $= -\frac{1}{4} \cos 4x + ($ Since shader forgot the gubstitute for $y = -\frac{1}{2} (-1)$ $= -\frac{1}{2} (-1)$ $y = -\frac{1}{2} (x - \pi)$	Exam MATHEMATICS : Question	ι.
forgot the $+C$. c) $y'=\frac{1}{2}\cos x$ $y(x)=\frac{1}{2}\cos x$ $y(x)=\frac{1}{2$	Suggested Solutions	Marker's Comments
$y(x) = \frac{1}{2} \cos \pi$ $= -\frac{1}{2}(-1)$ $= -\frac{1}{2}$ $y - 0 = -\frac{1}{2}(x - \pi)$ $y = -\frac{1}{2} + \frac{\pi}{2} \text{ or } x + 2y - \pi = 0$ $y = -\frac{1}{2} + \frac{\pi}{2} \text{ or } x + 2y - \pi = 0$ $y = -\frac{1}{2} + \frac{\pi}{2} + \frac{\pi}{2} = 0$ $y = -\frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} = 0$ $y = -\frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} = 0$ $y = -\frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} = 0$ $y = -\frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} = 0$ $y = -\frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{$		Some student forgot the + C.
$y = -\frac{1}{2} (x - \pi)$ $y = -\frac{1}{2} + \frac{\pi}{2} \text{ or } x + 2y - \pi = 0$ $y = -\frac{1}{2} + \frac{\pi}{2} \text{ or } x + 2y - \pi = 0$ $y = -\frac{1}{2} + \frac{\pi}{2} + \frac{\pi}{2} \text{ or } x + 2y - \pi = 0$ $y = -\frac{1}{2} + \frac{\pi}{2} + $	$y(\bar{r}) = \frac{1}{2} \cos \pi$ = $\frac{1}{2} (-1)$ = $-\frac{1}{2}$	Students did not substitue
Shudents did not have the correct period. e) $PA = 2PB$ $PA^2 = 2PB^2 = PA^2 = 4PB^2$ $PA^2 = 2PB^2 = PA^2 = 4PB^2$ $PA^2 = 2PB^2 = PA^2 = 4PB^2$ $PA^2 = 4PB^2 = 4PB^2$ $PA^2 = 4PB^2 = 4PB^2$ $PA^2 =$	$y-0=-\frac{1}{2}(x-\pi)$ $y=-\frac{x}{2}+\frac{\pi}{2}$ or $x+2y-\pi=0$	Idid not
e) $PA = 2PB$ $PA^{2} = (PB)^{2} = PA^{2} = (PB)^{2}$ $(x-1)^{2} + (y-4)^{2} = 4[(x-2)^{2} + (y+8)^{2}]$ $(x-1)^{2} + (y-4)^{2} = 4[(x-2)^{2} + (y+8)^{2}]$ Some	3	the wirect
$\frac{2-2x+1}{x^2-2x-8y+17} = \frac{4x^2-16x+16+4y^2+16+272}{3x^2-14x+3y^2+72y+255} = 0$ expand collectly	e) $PA = 2PB$ $PA^{2} = PA^{2} = PA^{2} = PB^{2}$ $(x-1)^{2} + (y-4)^{2} = 4[(x-2)^{2} + (y+8)^{2}]$ $x^{2} - 2x + 1 + y^{2} - 8y + 16 = 4[x^{2} - 4xy^{6} + y^{2} + 16y + 64]$ $x^{2} - 2x - 8y + 17 = 4x^{2} - 16x + 16 + 4y^{2} + 16x + 2x$	expand

Exam		: QuestionI.3	
• 0	Suggested Solutions	0	Marker's Comments
(iv) Perpend	icular distance fro	m Point A TO 11	V.
line k:	$=$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{4}$	8/	
	$= \begin{cases} 3(4) - 1 + 1 \\ \sqrt{2^2 + 1^2} \end{cases}$		
	•		
	$= \frac{15}{\sqrt{5}} / or 3.$	15 units V	
(V) Area a			
7.1.60	$^{\circ}$ $\triangle ABC = \frac{1}{2} \times bas$		
	$=1\times [(4-2)^{2}+$	(-25)2 x 355	
	$= \int \int 45 \times 3$	12	
	$=22\frac{1}{2}$ unit	2	
(b) T ₁ = 49,			
a = 49		most of the	students
$T_n = a + C$	t .	were gettu	ig n=11.3,
	4(n-1)	(but they u	sere rounding
(i) Tn = 53-	40 PM	it off to	
		())
11) 321= 1	(2a+(n-13d)	1	,
	(98+(n-1)x-4)		
	n+642=0 V		
n = 3	51 ± √33		
	418 14 11:3		
0 - 15:10 5	not the valid ans	swer as it	
exceeds	321 tiles.	X	
島n=11·3 15	321 tiles. The correct onsa =14	er V	
Therfore, D	= 14	\checkmark	
	s on the TOP rol		

Penrith SHS

2014 HSC Trial - 2U Maths

Qn(14): Total 15 Marks

$$P(F) = \frac{1}{20}$$
 $P(G) = \frac{19}{20}$

(a)(i)
$$P(FFF) = \left(\frac{1}{20}\right)^3 = \frac{1}{8000}$$

(ii)
$$P(GGG) = \left(\frac{19}{20}\right)^3 = \frac{6859}{8000}$$

(iii)
$$P(FFG) = 3\left(\frac{1}{20}\right)^2 \left(\frac{19}{20}\right) = \frac{57}{8000}$$

(iv) P(At most two bulbs are faulty) =
$$1 - P(FFF) = 1 - \left(\frac{1}{20}\right)^3 = \frac{7999}{8000}$$

(b)(i) Area of sector
$$=\frac{1}{2}r^2\theta = \frac{1}{2} \times 9^2 \times \frac{\pi}{3} = \frac{27\pi}{2} \text{ cm}^2$$

(ii)
$$BD = 9\sin\frac{\pi}{6} = 4.5 \text{ cm}$$
 $CD = 9\cos\frac{\pi}{6} = 4.5\sqrt{3} \text{ cm}$

Shaded Area =
$$\frac{27\pi}{2} - \frac{1}{2}BD \times CD = \frac{27\pi}{2} - \frac{1}{2} \times 4 \cdot 5 \times 4 \cdot 5\sqrt{3}$$

$$=\frac{27\pi}{2} - \frac{81\sqrt{3}}{8} = \frac{108\pi - 81\sqrt{3}}{8} \text{ cm}^2$$

(c)(i)
$$\int \frac{2x}{x^2+3} dx = \ln(x^2+3) + C$$

(ii)
$$\int \frac{e^{2x}}{e^{2x}+3} dx = \frac{1}{2} \ln(e^{2x}+3) + C$$

Daniel Antone

Exam MATHEMATICS : Question 15	
Suggested Solutions	Marker's Comments
aj $y = x^2$ $y = 4x + 5$ $x^2 = 4x + 5$ $x^2 - 4x - 5 = 0$ $x = 5$ $y = 5^2$ = 25	oremember to find the yvalve
$(x-5)(x+1)=0$ $x=-1$ $y=(-1)^2$ x=5,-1 $=1(5,25)(-1,1)$	
11. (-1,1) (5,25)	label axes label points of intersection some students didn't show that lines intersect twice
$A = \int_{-1}^{3} 4x + 5 - x^{2} dx$ $= \left[\frac{4x^{2}}{2} + 5x - \frac{x^{3}}{3} \right]_{-1}^{5}$ $= \left[2x^{2} + 5x - \frac{x^{3}}{3} \right]_{-1}^{5}$	
$= \left[\left(2(s)^2 + 5(s) - \frac{5^3}{3} \right) - \left(2(-1)^2 + 5(-1) - \frac{(-1)^3}{3} \right) \right]$ $= \left[\frac{100}{3} - \frac{8}{3} \right]$ $= \frac{108}{3} = 36 \text{ units}^2$	
b. i. $\frac{z}{y} = \frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{3}}{\sqrt{2}$	answer in radians not degrees
= 玉. {4+8元} = 4.009119 = 4.01	

Exam MATHEMATICS : Question	
Suggested Solutions	Marker's Comments
$R = \sqrt{r^2 - x^2}$	
ii. $V = \pi R^2 h$ (cylinder) V = 22 $V = \pi (r^2 - x^2) 2x$ $V = 2\pi x (r^2 - x^2)$ iii. $\frac{dV}{dx} = 2\pi (r^2 - x^2) + 2\pi x (-2x)$ $= 2\pi r^2 - 2\pi x^2 - 4\pi x^2$ $= 2\pi r^2 - 6\pi x^2 = 0$ $6\pi x^2 = 2\pi r^2$ $x^2 = \frac{r^2}{3}$ $x = \frac{r}{3}$ Since $x > 0$ $x = \frac{r}{\sqrt{3}}$	differentiate with respect to x
test for max volume $\frac{d^2V}{dx^2} = -12\pi x = -\frac{12\pi r}{\sqrt{3}} \text{ when } x = \frac{r}{\sqrt{3}}$ $\therefore \text{ max volume since } \frac{d^2V}{dx^2} < 0$ $V = 2\pi \left(\frac{r}{\sqrt{3}}\right) \left(r^2 - \left(\frac{r}{\sqrt{3}}\right)^2\right)$ $= \frac{2\pi r}{\sqrt{3}} \left(\frac{3r^2 - r^2}{3}\right) = \frac{2\pi r}{\sqrt{3}} \left(\frac{2r^2}{3}\right) = \frac{4\pi r^3}{3\sqrt{3}}$ $= \frac{4\sqrt{3\pi r}}{9}$	remember to test for max volume using $\frac{dV}{dx}$ or $\frac{d^2V}{dx^2}$

Exam Yr 1 2 2 U TATAL MATHEMATICS : Questionl.b	UHIRGUIN
Suggested Solutions	Marker's Comments
(16 a) Vertex (2,-1)	Students unfam
$(3c-2)^2 = 4a(y+1)$ $y = 2x-7$	form of the part
$x^2 - 4x + 4 = 4a(2x - 6)$	(x-h)=4a(y-k
$\chi^2 - 4x + 4 = 8ax - 24a$	issue with how
$\chi^2 - (4+8a)x + (4+24a) = 0$	y=2x-7 the tangent fit in
tangent, so $\Delta = 0$	with the parabol
$(4+8a)^2 - 4 \times 1 + (4 + 24a) = 0$	
16+64a+64a2-16-96a=0	
$64a^2 - 32a = 0$	
a(2a-1)=0	
$a = 0$, $a = \frac{1}{2}$	
$(x-2)^2 = 2(y+1)$	
b) i) $Q = Q_0 e^{-\kappa t}$	i) incurrect rounding for
1 Qo = Ooe - kt , t = 1530	significant figure
((±) = - kt	is a common em
$K = \frac{\ln(\frac{1}{2})}{\sqrt{130}}$	
K= 0.000453	
K= 0.000453 v 4.58×10-4 (3 sig.fg)	
(1) 0. 2 = e^{-kt}	il) students should we
ln 0.2 = -kt	
$t = \frac{\ln 0.2}{-\kappa}$	exact value of K for further calculation.
$t = \frac{-\ln 0.2}{-\ln (\frac{1}{6})}$	
t = 3[[3	
f - 3723 ·	

Exam Y-12 211 TRIAL MATHEMATICS : Question(.6)	CHIRGWIN
Suggested Solutions	Marker's Comments
Q16 d) i) Driver cost = $2 \times 40 \times \frac{1000}{V}$ $= \frac{9000}{V}$ Petrol Cost = $1.40 \times (60 + \frac{V^2}{10}) \times \frac{1000}{V}$ $= \frac{84000}{V} + 28V$ $= 28V + \frac{164000}{V} + 28V$	i) students didn't draw the connecting time = 1000 or forgetting that there are 2 drivers.
(i) $\frac{dC}{dV} = 28 - 164000V^{2}$ $28 = 164000V^{2}$ $V^{2} = \frac{41000}{7}$ $V = \pm \sqrt{\frac{41000}{7}}$ $V = \pm 76.53$ $\frac{d^{2}C}{dV^{2}} = 328000V^{3}$ Out $V = + \sqrt{\frac{41000}{7}}$ $V = -\sqrt{\frac{41000}{7}}$ $V = -\sqrt{\frac{41000}{7}}$ $V = -\sqrt{\frac{41000}{7}}$ When $V = +\sqrt{\frac{41000}{7}}$ However time has to be less than 12 hours, $V = \sqrt{\frac{41000}{7}}$ $V = \sqrt{\frac{41000}{7}} = 13 \text{ hours}$. $V = \sqrt{\frac{1000}{7}} = 13 \text{ hours}$. $V = \sqrt{\frac{1000}{7}} = 13 \text{ hours}$.	Germon Errors ii) XIN correct differentiation of work down 16400, transcript error of majority of moderns forgor to check whether the V (speed) lhey found satisfied all conditions given by the question.