Mr A	ntonio
Mrs (Collett
Mrs I	srael
Mrs 1	Kerr
Mrc V	Williams

Name:		 •••	• • •	• • •	• • • •	 • • • •	• • • •	 	• • • •	 •••	• • • •
Teache	r:	 				 		 		 	

HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION 2014

Mathematics Extension 1

General Instructions

- Reading time 5 minutes.
- Working time 2 hours.
- Write using pencil for Questions 1-10.
- Write using black or blue pen for Questions 11-14. Black pen is preferred.
- Board approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- In Questions 11-14, show relevant mathematical reasoning and/or calculations.

Total Marks - 70

Section I

Pages 1-4

10 marks

- Attempt all Questions 1-10
- Allow about 15 mins for this section

Section II

Pages 5-11

60 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

Mark	/70
Highest Mark	/70
Rank	

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section.

Use the multiple choice answer sheet for Questions 1-10.

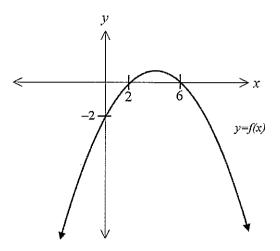
1 The roots of the equation $x^3 - 5x^2 + 4 = 0$ are α, β and γ .

The value of $\alpha + \beta + \gamma$ and the value of $\alpha\beta\gamma$ are respectively.

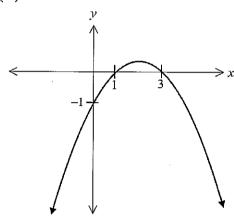
- (A) 5 and 4
- (B) 5 and -4
- (C) -5 and 4
- (D) -5 and -4
- 2 Evaluate $\sin^{-1} \left(\sin \frac{4\pi}{3} \right)$.
 - (A) $\frac{4\pi}{3}$
 - (B) $\frac{\pi}{3}$
 - (C) $\frac{-2\pi}{3}$
 - (D) $\frac{-\pi}{3}$
- When the polynomial $P(x) = x^4 + ax + 2$ is divided by $x^2 + 1$ the remainder is 2x + 3.

The value of a is

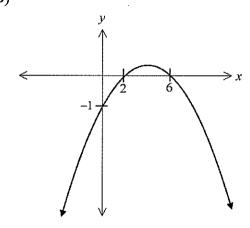
- (A) 1
- (B) 2
- (C) 0
- (D) 3

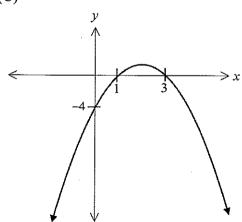

4 Given the points A(7, 14) and B(1, 2), C is a point on AB produced such that AB: BC = 2:1.

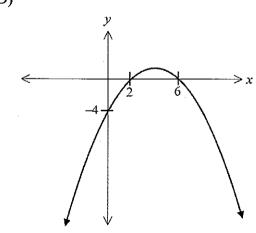
Find the coordinates of C.


- (A) (-5, -10)
- (B) (-2, -4)
- (C) (3, 6)
- (D) (5, 10)
- 5 Find $\int \frac{1}{\sqrt{1-3x^2}} dx$.
 - (A) $3\sin^{-1}(3x) + C$
 - (B) $\frac{1}{3}\sin^{-1}(3x) + C$
 - (C) $\sqrt{3}\sin^{-1}\left(\sqrt{3}x\right) + C$
 - (D) $\frac{1}{\sqrt{3}}\sin^{-1}\left(\sqrt{3}x\right) + C$
- 6 Evaluate $\int_0^{\frac{\pi}{6}} \sin^2\theta \, d\theta$.
 - $(A) \qquad \frac{\pi}{12} \frac{\sqrt{3}}{8}$
 - (B) $\frac{\pi}{6} \frac{\sqrt{3}}{4}$
 - (C) $\frac{1}{24}$
 - (D) 1

7 The figure on the right shows the graph of y = f(x).


If 2f(x) = g(x), which of the following may represent the graph of y = g(x)?


(A)


(B)

(C)

(D)

8 If $\int_{-a}^{a} f(x) dx = 0$, then which one of the following statements is false?

- (A) f(x) is an odd function
- (B) $\int_0^a f(x) dx = \int_{-a}^0 f(-x) dx$
- (C) $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$
- (D) The area bounded by the curve y = f(x), the x axis and the lines x = a and x = -a is twice the area bounded by the curve y = f(x), the x axis and the lines x = 0 and x = a.

9 For $0^{\circ} \le \theta \le 90^{\circ}$, the least value of $\frac{30}{3\sin^2 \theta + 2\sin^2(90^{\circ} - \theta)}$ is

- (A) 5
- (B) 6
- (C) 10
- (D) 15

10 Given *n* is an integer, the general solution of $\tan\left(2x + \frac{\pi}{4}\right) = \sqrt{3}$ is

- $(A) \qquad x = \frac{(12n+1)\pi}{24}$
- (B) $x = \frac{(3n+1)\pi}{6}$
- $(C) \qquad x = \frac{(12n-1)\pi}{24}$
- (D) $x = \frac{\left(6n+1\right)\pi}{6}$

Section II

60 marks

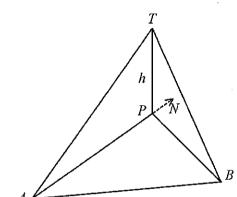
Attempt Questions 11-14

Allow about 1 hours and 45 minutes for this section.

Answer each question in a SEPARATE writing booklet. Extra booklets are available.

In Questions 11 - 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11. (15 marks). Use a Separate Booklet.


Marks

(a) Given $f(x) = x^4 + x^2 - 80$.

2

Assume there is a zero near x = 3. Use Newton's method once to find a better approximation to the root correct to 2 significant figures.

(b) From a point A due south of a tower, TP, the angle of elevation of the top of the tower, T is 25° and from a point B due east of the tower is 32°.

The distance from A to B is 50 metres.

Let the height of tower TP be h metres.

(i) Copy the diagram in your answer booklet and complete with all given information.

1

(ii) Find an expression for PA in terms of h.

1

(iii) Find the height of the tower, h, correct to 1 decimal place.

3

Question 11 continues on page 6.

- (c) The function f(x) is defined as $f(x) = \frac{3x-4}{x+2}$, where $x \neq -2$.
 - (i) Find an expression for $f^{-1}(x)$.

(ii) Write down the domain of $f^{-1}(x)$.

1

(d) Solve
$$\frac{4}{(x-1)^2} > 1$$
.

3

(e) Find
$$\int \frac{\ln x}{2x} dx$$
 using the substitution $u = \ln x$.

2

End of Question 11

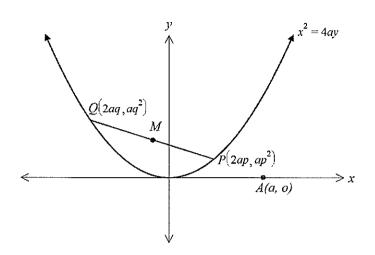
(a) Find the term independent of x in the expansion of $\left(2x + \frac{1}{x^2}\right)^6$.

2

(b) (i) Show that $\tan x = \frac{\sin 2x}{1 + \cos 2x}$.

2

(ii) Hence evaluate $\tan \frac{\pi}{12}$ in simplest form.


2.

(c) Prove by mathematical induction that $8^n - 3^n$ is divisible by 5, where n is a positive integer.

3

Question 12 continues on page 8.

(d)

In the diagram above, the points $P(2ap,ap^2)$ and $Q(2aq,aq^2)$ lie on the parabola with equation $x^2 = 4ay$.

- (i) Write down the coordinates of the midpoint M of the chord PQ.
- (ii) Show that the equation of the chord PQ is $y = \frac{(p+q)x}{2} apq$.
- (iii) Show that the condition for the chord PQ produced to pass through the point A(a,0) is p+q=2pq.
- (iv) Find the cartesian equation of the locus of M, as the points P and Q move on the parabola subject to the constraint that PQ pass through A(a,0).

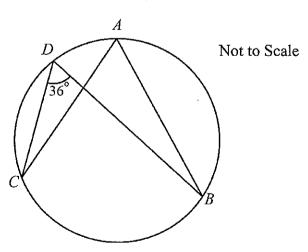
End of Question 12

(a) Find the acute angle between the tangents on the curve $y = \tan^{-1} x$ at the points where x = 0 and x = 1. Answer correct to the nearest degree.

2

(b) During a chemical reaction, the amount, R kg, of chemical formed at time t hours is modelled by the differential equation

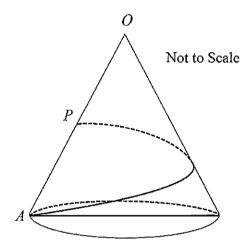
$$\frac{dR}{dt} = 4 - \frac{R}{15}.$$


(i) Show that $R = 60 - 50e^{\frac{-t}{15}}$ is a solution to $\frac{dR}{dt} = 4 - \frac{R}{15}$.

2

(ii) How long will it take for 20 kg of the chemical to form? Give your answer correct to 2 significant figures.

2


(c) In the figure below, BD is a diameter of the circle ABCD. If AB=AC and $\angle BDC=36^{\circ}$, find $\angle ABD$. 3

Question 13 continues on page 10.

- (d) A thin sheet of smooth metal is in the shape of a sector of a circle with OA, OB as bounding radii each of length 10 cm, and the angle AOB is 60° .
 - (i) Find the length of the arc AB.

(ii) The sheet is now bent to form a right circular cone by welding the radii *OA* and *OB* together (and inserting a circular disc to close in the cone at the base).

(α) Find the volume of the cone in terms of π .

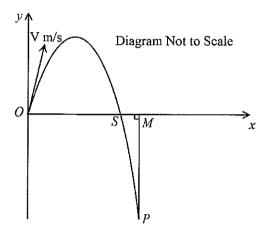
3

(Note: The volume of a right circular cone is, $\frac{1}{3}\pi r^2 h$.)

(β) On the surface of this cone a thin string is pulled tight starting with one end fixed at the point A and passing once round the cone to the other end P which is at the midpoint of OA (as shown in diagram).

2

Find the exact length of this string.


End of Question 13

(a) Solve
$$\sin x - 3\cos x = 3$$
 for $0^{\circ} \le x \le 360^{\circ}$.

(b) A projectile is fired from a point O with initial speed of V m/s at an angle of elevation θ . If x and y are the horizontal and vertical displacements of the projectile in metres from O at time t seconds later then

 $x = Vt \cos\theta$ and $y = Vt \sin\theta - \frac{1}{2}gt^2$ where g m/s² is the acceleration due to gravity.

The projectile falls to a point P below the level of O such that PM = OM.

(i) Prove that the time taken to reach P is $2V \frac{(\sin \theta + \cos \theta)}{g}$ seconds.

(ii) Show that the distance OM is $\frac{V^2}{g} (\sin 2\theta + \cos 2\theta + 1) \text{ metres.}$

- (iii) If OS = r, $OM = \frac{4r}{3}$ and r > 0, prove that $\sin 2\theta 3\cos 2\theta = 3$.
- (iv) Hence, by using Question 14 part (a), find the value of θ .
- (v) Find an expression for the horizontal and vertical components of the velocity. 1
- (vi) If the magnitude of the velocity of the projectile at P is kV m/s, find the exact value of k.

End of Paper